

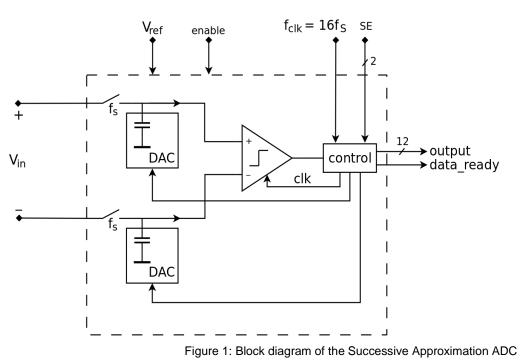
#### Features

- sample-rate up to 10 MS/s
- low power consumption, proportional to sample-rate: 740 μW @ 10 MS/s 7.4 μW @ 100 kS/s
- single-ended and differential mode
- 10.5 ENOB
- >80 dB SFDR (incl. THD)
- 0.15 mm<sup>2</sup> in baseline 0.18 μm CMOS
- rail-to-rail input range
- supports full Nyquist band
- silicon proven

## Applications

- low-power applications
- sensor applications
- radio baseband processing

## **General description**


This datasheet describes a general purpose Analog to Digital Converter (ADC) for low-power applications. The converter is a chargeredistribution successive-approximation type converter, suitable for the entire Nyquist band.

The key feature of this ADC is its low power consumption. This is achieved by using an energy efficient comparator and by making all circuitry dynamic. As a result, quiescent current in e.g. amplifiers is avoided, and the power consumption is fully proportional to the sample-rate. This property makes the ADC ideal for low duty-cycle sensor applications and other applications benefiting from low power consumption.

The converter can operate in both single-ended and differential mode, making it suitable for a broad range of applications.

The functional block diagram is shown in Figure 1.

The IP product described in this datasheet is silicon proven.



Block diagram



## **Specifications**

#### **Default test conditions**

| Supply voltage (VDD)                         | 1.8 V                              |
|----------------------------------------------|------------------------------------|
| Reference voltage (VREF)                     | 1.0 V                              |
| Clock frequency (f <sub>CLK</sub> )          | 160 MHz (ADC sample-rate: 10 MS/s) |
| Common-mode input voltage (V <sub>CM</sub> ) | 0.5 V                              |
| Temperature (T)                              | 25 °C                              |
|                                              |                                    |

#### **Electrical Specifications**

| Description                                                                                                                                             | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units<br>MS/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample-rate                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Clock frequency                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Supply voltage                                                                                                                                          | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reference voltage (without using reference buffer)                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>DD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Full scale input voltage (single-ended)                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Input capacitance (single-ended)<br>This includes about 1 pF bondpad capacitance. If the ADC is<br>integrated in a SoC this is reduced to about 0.2 pF. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Input current (single-ended)<br>(e.g. 0.7 μA for a sample-rate of 10 MS/s)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μΑ /<br>(MS/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4<br>740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reference buffer <sup>1)</sup>                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Spurious Free Dynamic Range (f <sub>IN</sub> = 2.1 MHz) (including harmonics)                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Signal to Noise Ratio ( $V_{IN}$ = 0 dB <sub>FS</sub> , f <sub>IN</sub> = 1.1 kHz) 6                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Effective Number Of Bits (f <sub>IN</sub> = 1.1 kHz) 10.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure of Merit defined as: $\frac{P}{2^{ENOB} \cdot f_S}$ 0.05<br>(at both 10 MS/s and 100 kS/s)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pJ / conv.<br>step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Differential Non-Linearity ±                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Integral Non-Linearity ± 2                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Die area in 0.18 µm CMOS                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                         | Sample-rate   Clock frequency   Supply voltage   Reference voltage (without using reference buffer)   Full scale input voltage (single-ended)   Input capacitance (single-ended)   This includes about 1 pF bondpad capacitance. If the ADC is integrated in a SoC this is reduced to about 0.2 pF.   Input current (single-ended)   (e.g. 0.7 µA for a sample-rate of 10 MS/s)   Power consumption ADC at 100 kS/s (f <sub>IN</sub> = 1.1 kHz) 10 MS/s (f <sub>IN</sub> = 2.1 MHz)   Reference buffer <sup>1</sup> )   Reference buffer <sup>1</sup> Spurious Free Dynamic Range (f <sub>IN</sub> = 2.1 MHz) (including harmonics)   Signal to Noise Ratio (V <sub>IN</sub> = 0 dB <sub>FS</sub> , f <sub>IN</sub> = 1.1 kHz)   Effective Number Of Bits (f <sub>IN</sub> = 1.1 kHz)   Figure of Merit defined as: $\frac{P}{2^{ENOB} \cdot f_S}$ (at both 10 MS/s and 100 kS/s)   Differential Non-Linearity   Integral Non-Linearity | Sample-rate 0   Clock frequency 1.65   Supply voltage 1.65   Reference voltage (without using reference buffer) 0.8   Full scale input voltage (single-ended) 0   Input capacitance (single-ended) 1   This includes about 1 pF bondpad capacitance. If the ADC is integrated in a SoC this is reduced to about 0.2 pF. 1   Input current (single-ended) (e.g. 0.7 μA for a sample-rate of 10 MS/s) 100 kS/s (f <sub>IN</sub> = 1.1 kHz) 10 MS/s (f <sub>IN</sub> = 2.1 MHz)   Power consumption ADC at 100 kS/s (f <sub>IN</sub> = 2.1 MHz) 10 MS/s (f <sub>IN</sub> = 2.1 MHz) 10 MS/s (f <sub>IN</sub> = 2.1 MHz)   Reference buffer <sup>1</sup> ) 10 10 10   Spurious Free Dynamic Range (f <sub>IN</sub> = 2.1 MHz) 10 Including harmonics) 11 kHz)   Signal to Noise Ratio (V <sub>IN</sub> = 0 dB <sub>FS</sub> , f <sub>IN</sub> = 1.1 kHz) 12 12   Effective Number Of Bits (f <sub>IN</sub> = 1.1 kHz) 13 14   Figure of Merit defined as: $\frac{P}{2ENOB \cdot f_S}$ (at both 10 MS/s and 100 kS/s) 10 10   Differential Non-Linearity 11 11 11   Integral Non-Linearity 11 11 11 | Sample-rate0Clock frequency16Supply voltage1.65Supply voltage1.65Supply voltage1.65Full scale input voltage (single-ended)0.8Input capacitance (single-ended)0.95Input capacitance (single-ended)0.95Input current (single-ended)2Input current (single-ended)0.07Power consumption ADC at<br>100 kS/s ( $f_{IN} = 1.1 \text{ kHz}$ )7.4N740Reference buffer 1)790Spurious Free Dynamic Range ( $f_{IN} = 2.1 \text{ MHz}$ )80Signal to Noise Ratio ( $V_{IN} = 0 \text{ dB}_{FS}, f_{IN} = 1.1 \text{ kHz}$ )10.5Figure of Merit defined as: $\frac{P}{2ENOB \cdot f_S}$ 0.05Integral Non-Linearity $\pm 1.5$ Integral Non-Linearity $\pm 2$ | Sample-rate010Clock frequency16Supply voltage1.65Supply voltage1.65Reference voltage (without using reference buffer)0.8Full scale input voltage (single-ended)0.95Input capacitance (single-ended)0.95This includes about 1 pF bondpad capacitance. If the ADC is<br>integrated in a SoC this is reduced to about 0.2 pF.2Input current (single-ended)<br>(e.g. 0.7 $\mu$ A for a sample-rate of 10 MS/s)0.07Power consumption ADC at<br>100 kS/s (fin = 1.1 kHz)<br>(including harmonics)7.4<br>740Reference buffer 1)790Spurious Free Dynamic Range (fin = 2.1 MHz)<br>(including harmonics)80Signal to Noise Ratio (Vin = 0 dB <sub>FS</sub> , fin = 1.1 kHz)<br>(at both 10 MS/s of 100 kS/s)0.05Figure of Merit defined as:<br>$\frac{P}{2^{ENOB} \cdot f_S}$<br>(at both 10 MS/s and 100 kS/s)0.05Differential Non-Linearity<br>Integral Non-Linearity $\pm 1.5$ Integral Non-Linearity $\pm 2$ |

Table 1: Specifications of the Analog-to-Digital Converter

Notes: 1) A reference buffer is included on the test chip, which is available as a separate IP block, see section Options.



Succesive approximation ADC

### Port list

| Port name  | Width | Description                                                                                                                                                                    |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GND        | 1     | Ground                                                                                                                                                                         |
| VDD        | 1     | Supply voltage                                                                                                                                                                 |
| VREF       | 1     | Reference voltage, loaded with switched capacitor circuit                                                                                                                      |
| CLK        | 1     | Clock signal at 16.fs                                                                                                                                                          |
| ENABLE     | 1     | Enable signal for the converter (active high)                                                                                                                                  |
| VINP       | 1     | Non-inverting analog input signal                                                                                                                                              |
| VINN       | 1     | Inverting analog input signal                                                                                                                                                  |
| PSE        | 1     | Selects VINN as single-ended input (active high). VINP must<br>be connected to ground externally. If both PSE and NSE are<br>low, VINP and VINN act as a differential input.   |
| NSE        | 1     | Selects VINP as single-ended input (active high). VINN must<br>be connected to ground externally. When both PSE and NSE<br>are low, VINP and VINN act as a differential input. |
| OUT        | 12    | Digital output signal, non-inverting, unsigned binary                                                                                                                          |
| DATA_READY | 1     | Indicates that the conversion is complete and the output is<br>updated. This signal can be used to re-clock the output data.<br>(active high)                                  |

Table 2: port function description

## **Detailed description**

The SE signals select which of the two inputs ( $V_{INP}$  or  $V_{INN}$ ) is used as the single-ended input; the other input should be grounded. If both SE signals are zero, the converter operates in differential mode.

After the enable signal is made active high, the ADC will track the input signal at the next rising edge of clk, as indicated in Figure 2. At the next rising edge of clk, the input signal is sampled and the conversion is started. After finishing the conversion, the output code is updated and the data\_ready signal is activated. This signal can be used to re-clock the output data.

The ADC core requires a clock frequency ( $f_{CLK}$ ) of 16•f<sub>S</sub> and a buffered reference voltage ( $V_{REF}$ ) that is able to drive a switched capacitor network. The capacitance of this network is around 1 pF. This buffered voltage can either be made by an on-chip reference buffer, or it can be applied externally. In case  $V_{DD}$  is sufficiently clean, it can also be used as the buffered reference voltage. The reference voltage determines the full-scale voltage of the ADC.

Basically, the input impedance is purely capacitive, since at the end of the conversion, the charge on the capacitors is restored before the sample-switches are re-activated. Due to parasitic capacitance a small DC current (proportional to the sample frequency) will flow into the input nodes.



| clk (160 MHz)        |                            |
|----------------------|----------------------------|
| enable               |                            |
| track (ADC internal) |                            |
| data_ready           |                            |
| data_out<11:0>       | X X X First valid sample X |
| Figure 2: Tir        | ning diagram of the ADC    |

## Deliverables

The IP deliverables consist of a GDS file, a behavioral model, a netlist and integration documentation. The product can be delivered as a single IP component for customer integration or Axiom IC engineers can integrate the product as part of a SoC engagement.

## Options

For generating the buffered reference voltage, Axiom IC offers energy-efficient reference buffers specifically aimed at this converter and adjustable to the customer's requirements.

The converter can also be extended with gain and/or offset calibration.

For more information about these options, please contact us at info.enschede@teledyne.com.

# **Revision history**

The following table lists the revision history, only major revisions are shown.

| Revision | Date       | Reason for revision                                                                                                                                                                                |
|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F9       | 2017-07-18 | Template update                                                                                                                                                                                    |
| F8       | 2014-08-29 | Clarified polarity of inputs w.r.t. PSE/NSE signals                                                                                                                                                |
| F7       | 2012-03-22 | Expanded descriptions of V <sub>IN</sub> , SE and Enable signals. Updated detailed description and added timing diagram. Updated specs $C_{IN}$ , $V_{FS}$ and SFDR. Added Nyquist operation band. |
| F4       | 2010-09-17 | Included description and values about input current                                                                                                                                                |

Table 3: Document revision history





# For more information about Teledyne DALSA visit our Web Site at

http://www.teledynedalsa.com/semi/mixed-signal/

or contact us at

Teledyne DALSA Enschede Colosseum 28 7521 PT Enschede the Netherlands +31 (0)53-7990700 info.enschede@teledyne.com

Information relating to products and circuits furnished herein by Teledyne DALSA B.V. or its subsidiaries ("Teledyne DALSA") is believed to be reliable. However, Teledyne DALSA assumes no liability for errors that may appear in this document, or for liability otherwise arising from the application or use of any such information which may result from such application or use. The products, their specifications and the information appearing in the document are subject to change by Teledyne DALSA without notice. Trademarks and registered trademarks are the property of their respective owners.

© 2018 Teledyne DALSA B.V. - All Rights Reserved.

**TECHNICAL DOCUMENTATION - NOT FOR RESALE**