

Successive approximation ADC

Features

- sample-rate up to 37.5 MS/s
- scalable full-scale input range 0.4-0.6 V_{PP,SE}
- low power consumption 6.3 mW
- differential mode
- 62 dB SNR
- 70 dB SFDR (incl THD)
- 12 bits, 10 ENOB
- 0.03 mm² in baseline 40 nm CMOS

Applications

- Multi-mode digital receivers
- Cable modems
- Video digitizing and CCD imaging
- Portable instrumentation
- Medical imaging

General description

This datasheet describes a general purpose Analog to Digital Converter (ADC) for low-power applications. The converter is a chargeredistribution successive-approximation type converter, and it is suitable to operate in a timeinterleaved ADC to enable higher sample-rates. As an example, this ADC is applied in a 2.5 GS/s ADC system.

The key feature of this ADC is its low power consumption. Next to this, the full-scale range is programmable and its area is small.

The functional block diagram is shown in Figure 1.

The IP product described in this datasheet is silicon proven. The 2.5 GS/s ADC system in which this ADC is applied fulfills all mass-production consumer electronics requirements.

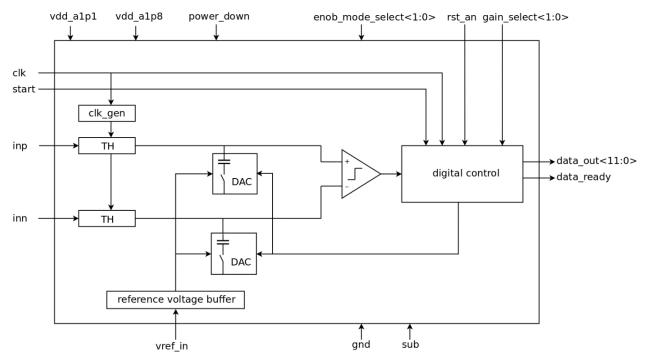


Figure 1: Block diagram of the Successive Approximation ADC

Block diagram

Specifications

Electrical Specifications

Parameter	Description	Min	Тур	Max	Units
fs	Sample-rate		37.5		MS/s
fclk	Clock frequency		18		fs
V _{DD1p1}	Supply voltage	1.1	1.15	1.2	V
V _{DD1p8}	Supply voltage		1.8	1.9	V
Vfs	Full-scale input voltage (programmable) 0.4		0.5	0.6	VPP,SE
CIN	Input capacitance (single-ended)		1.5		pF
PADC	Power consumption ADC		6.3		mW
PBANDGAP	Power optional bandgap reference ¹		3.0		mW
SFDR	Spurious Free Dynamic Range (including		70 ²		dB
SFDR	harmonics)		70		uБ
SNR	Signal to Noise Ratio		63		dB
DR	Dynamic Range		67		dB
ENOB	Effective Number Of Bits		10		bits
DNL	Differential Non-Linearity		1.5 ²		LSB
INL	Integral Non-Linearity		2 ²		LSB
Imp	lementation	i			
Area	Die area in 40 nm CMOS		0.03		mm ²

Table 1: Specifications of the Analog-to-Digital Converter

Note¹:A bandgap reference is available as a separate IP block, see section Options.

Note²: Estimation, since the linearity is limited by an input buffer. Measurements are being prepared to determine the actual ADC linearity.

SAADC 37.5MS/s12bGF40lp

Successive approximation ADC

Port list

Port name	Width	Description
GND	1	Ground
SUB	1	Substrate connection
VDD_A1P1	1	Analog 1.1V supply voltage
VDD_A1P8	1	Analog 1.8V supply voltage
VREF_IN	3	Reference voltage, only capacitively loaded
INP	1	Non-inverting analog input signal
INN	1	Inverting analog input signal
CLK	1	Clock signal at 18.fs
START	1	Signal that triggers the start of a new conversion
RST_AN	1	Asynchronous, active low, reset signal that sets the ADC in a well-defined state
POWER_DOWN	1	Power down signal, disables all static current
ENOB_MODE_ 2 SELECT		Signal to switch between various ENOB modes
		(optional)
GAIN_SELECT	2	Select the full-scale input range (0.8V, 1.0V or 1.2V)
DATA_OUT	12	Digital output signal, unsigned binary
DATA_READY 1		Indicates that the conversion is complete and the output is updated. This signal can be used to re-clock the output data.

Table 2: port function description

Detailed description

The converter is active when the power_down and reset signals are both disabled. When the start signal appears, the conversion starts by taking a sample of the input signal, as shown in Figure 2. When the conversion is finished,

Successive approximation ADC

the digital data appears at the output and the data_ready signal gives a pulse that can be used to re-clock the output data.

The ADC core requires a clock frequency (f_{CLK}) of 18·fs. The input impedance of the ADC is purely capacitive, since at the end of the conversion the charge on the capacitors is restored before the sample-switches are re-activated.

Figure 3 shows the SNR as a function of the input power for the three different settings of the full-scale voltage. For the 0.6V gain setting and low input powers, the dynamic range (DR) is 67 dB and for full-scale signals the SNR is 63 dB. For 0.5V and 0.4V gain settings, the DR is 1 dB, respectively 2 dB less, due to the reduced input power.

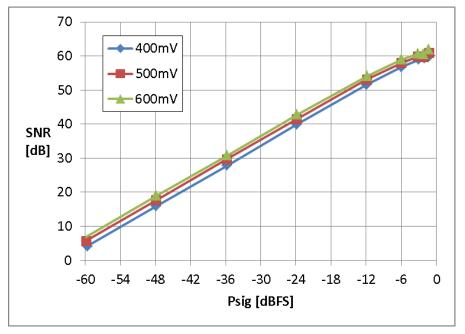


Figure 3: SNR as a function of the input power for the three different settings of the full-scale voltage

Deliverables

The IP deliverables consist of a GDS file, a behavioral model, a netlist and integration documentation. The product can be delivered as a single IP component for customer integration or Axiom IC engineers can integrate the product as part of a SoC engagement.

Options

For generating a bandgap reference voltage suitable for the ADC (programmable from 0.4V to 0.6V), Axiom IC offers an energy-efficient bandgap reference specifically aimed at this converter and adjustable to the customer's requirements. Multiple ADCs can be used with a single bandgap reference in a time-interleaved ADC.

The converter can be extended with gain and/or offset calibration.

For additional information, please contact us at info.enschede@teledyne.com.

Revision history

The following table lists the revision history, only major revisions are shown.

Revision	Date	Reason for revision
F3	2017-07-18	Template update
F2	2012-06-05	Included measurement results, updated description
F1	2012-04-16	Initial version based on SAADC10MS12b

Table 3: Document revision history

For more information about Teledyne DALSA visit our Web Site at

http://www.teledynedalsa.com/semi/mixed-signal/

or contact us at

Teledyne DALSA Enschede Colosseum 28 7521 PT Enschede the Netherlands +31 (0)53-7990700 info.enschede@teledyne.com

Information relating to products and circuits furnished herein by Teledyne DALSA B.V. or its subsidiaries ("Teledyne DALSA") is believed to be reliable. However, Teledyne DALSA assumes no liability for errors that may appear in this document, or for liability otherwise arising from the application or use of any such information which may result from such application or use. The products, their specifications and the information appearing in the document are subject to change by Teledyne DALSA without notice. Trademarks and registered trademarks are the property of their respective owners.

© 2018 Teledyne DALSA B.V. - All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE