
Doc #: SAP-AN0009 December 10, 2018 Page 1

Teledyne DALSA • 880 Rue McCaffrey • St-Laurent, Québec, H4T 2C7 • Canada
https://www.teledynedalsa.com/imaging/products/software/

SAP-AN0009: Using Sapera LT with OpenCV Processing
API

Sapera LT Image Acquisition into OpenCV
Processing Buffers

Overview
This application note describes how to export image data from a SapBuffer object for
use in a third-party image processing API such as OpenCV. This document is only
intended to give a general idea as to how the SapBuffer object can be used to create a
third-party compatible image.

This document assumes the user is familiar with the Sapera LT SapBuffer class and
the Mat class provided by the OpenCV library.

The examples provided within this document are demonstrated in C++ using the
Sapera LT ++ API and OpenCV (Open Source Computer Vision Library) as an example
third-party image processing API. These concepts are also compatible with C# and the
Sapera LT .NET API. Usage of OpenCV and other third-party libraries and their
algorithms is outside the scope of this document.

Note: This document is for illustrative purposes only. OpenCV is not a
product of Teledyne DALSA and thus no support for OpenCV shall be given.
Support for OpenCV may be obtained through https://opencv.org.

For more information on processing images within callbacks or using multiple threads,
contact Teledyne DALSA.

https://www.teledynedalsa.com/imaging/products/software/
https://opencv.org/

Doc #: SAP-AN0009 December 10, 2018 Page 2

Sapera LT SDK (full version), the image acquisition and control SDK for Teledyne
DALSA cameras and frame grabbers is available for download from the Teledyne
DALSA website:

http://teledynedalsa.com/imaging/support/downloads/sdks/

Note: Administrative privileges are required to perform the Sapera LT
software installation described in this application note.

http://teledynedalsa.com/imaging/support/downloads/sdks/

Doc #: SAP-AN0009 December 10, 2018 Page 3

Installation Prerequisites
The following Teledyne DALSA software is required:

• Sapera LT SDK (full version 8.32.00.1847 or higher)

• For applications that use Teledyne DALSA frame grabbers, the device driver
must be installed.

Sapera LT SDK and all device drivers are available for free download from the
Teledyne DALSA website:

https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/

https://www.teledynedalsa.com/en/support/downloads-center/device-drivers/

Key documentation provided with the installation of the Sapera LT SDK includes the
Getting Started Manual For Frame Grabbers or Getting Start Manual for GigE
Vision Cameras.

For detailed information on Sapera LT buffers please see the “Working with Buffers”
section of the Sapera LT User’s Manual and the SapBuffer class documentation in the
Sapera LT ++ Programmer’s Manual (or Sapera LT .NET Programmer’s Manual for C#
developers).

OpenCV Version
OpenCV 2.4.13 (or higher)

Example Program
An example program based on the Sapera Console Grab Example (GrabCPP) provided
with the standard Sapera LT SDK installation can be downloaded from the link below.
ftp://ftp.dalsa.com/Private/p_ProductSupport/TechSupportWiki/GrabConsole_OpenCV.zip

This example exports SapBuffer object data to an OpenCV Mat object and displays the
Mat object image in a separate window. The example code for exporting SapBuffer
data to Mat objects can be found in the ExportToOpenCV_Copy() and
ExportToOpenCV_Direct() functions in the GrabCPP.cpp file.

This example has been developed in C++ using Visual Studio 2012. If using a
different version of Visual Studio update the header file paths and linker paths
to include the paths to the OpenCV headers and libraries.

https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/
https://www.teledynedalsa.com/en/support/downloads-center/device-drivers/
ftp://ftp.dalsa.com/Private/p_ProductSupport/TechSupportWiki/GrabConsole_OpenCV.zip

Doc #: SAP-AN0009 December 10, 2018 Page 4

SapBuffer Functions and Properties
The following table shows the SapBuffer functions and properties you should be
familiar with to export an SapBuffer object to a third-party image object.

SapBuffer Functions and Properties
C++ C# Description

GetWidth() Width Gets the image width in pixels (# of
columns).

GetHeight() Height Gets the image height in pixels (# of rows).
GetFormat() Format Data format of the image (Mono8/10/12,

RGB888, etc.) See the SapBuffer constructor
documentation for a complete list of formats.

GetPixelDepth() PixelDepth Gets the number of significant bits .
GetBytesPerPixel() BytesPerPixel Gets the number of bytes required to store a

single pixel.
Read() Read() Allows reading pixel data from the SapBuffer

into an external data array.
GetAddress() GetAddress() Initiates direct buffer access to the raw pixel

data. ReleaseAddress() may need to be called
when direct access is no longer needed.

ReleaseAddress() ReleaseAddress() Ends direct buffer access obtained from
GetAddress().

ColorConvert() ColorConvert() Converts a color image (for example, Bayer
format) to RGB format.

These functions and parameters are fundamental to being able to export the
SapBuffer to a third-party image object. All functions in the table above may not be
required to perform the export. The ColorConvert() function is mentioned here for
SapBuffer objects containing Bayer encoded images. If your image needs to be
converted from Bayer to RGB format prior to exporting you can create a RGB
SapBuffer and use the ColorConvert() function to perform the Bayer to RGB
conversion.

SapBuffer Export
The SapBuffer objects can be exported to third-party utilities using one of two
methods:

• using the raw memory directly of the SapBuffer object

• using a copy of the SapBuffer object data

Both methods are demonstrated below using the OpenCV Mat class. The Mat class is
used to represent an image in the OpenCV library and can be used with many OpenCV
classes and functions to process the image.

Doc #: SAP-AN0009 December 10, 2018 Page 5

Creating a Mat Object Using SapBuffer Memory
Directly
The following source code illustrates creating an OpenCV Mat object that uses the
SapBuffer raw memory directly and displaying the Mat object image.

To obtain the SapBuffer memory address that contains the image data, use the
SapBuffer::GetAddress function. Then create an instance of the Mat object
(exportImg) using the constructor that accepts the dimensions of the image (width
and height), image type, and a pointer to the existing image data. The Mat object is
now ready for image processing.

Note that any changes made to the image data using the Mat object will also
be reflected in the SapBuffer data since they are both sharing the same image
data.

void ExportToOpenCV_Direct(SapBuffer *pSapBuf)
{
 if(pSapBuf == NULL)
 return;

 SapFormat sapFormat = pSapBuf->GetFormat();
 int OpenCV_Type = 0;

 switch(sapFormat)
 {
 case SapFormatMono8:
 OpenCV_Type = CV_8UC1;
 break;
 case SapFormatMono16:
 OpenCV_Type = CV_16UC1;
 break;
 case SapFormatRGB888:
 OpenCV_Type = CV_8UC3;
 break;
 case SapFormatRGB161616:
 OpenCV_Type = CV_16UC3;
 break;
 default:
 sapFormat = SapFormatUnknown;
 break;
 }

 if(sapFormat != SapFormatUnknown)
 {
 // Export to OpenCV Mat object using SapBuffer data directly
 void *pBuf = NULL;
 pSapBuf->GetAddress(&pBuf);
 Mat exportImg(pSapBuf->GetHeight(), pSapBuf->GetWidth(), OpenCV_Type, pBuf);

 namedWindow(OPENCV_WINDOW_NAME, WINDOW_NORMAL | CV_WINDOW_KEEPRATIO);

 // Display OpenCV Image
 imshow(OPENCV_WINDOW_NAME, exportImg);
 pSapBuf->ReleaseAddress(&pBuf);

 waitKey(1);
 }
}

Doc #: SAP-AN0009 December 10, 2018 Page 6

Creating a Mat Object Using a Copy of SapBuffer
Memory
The following source code illustrates creating an OpenCV Mat object that makes a
copy of the SapBuffer memory and displaying the Mat object image.

To create a Mat object with a copy of the data contained in the SapBuffer, use the
Mat::create function. This function sets the image dimensions (width and height) and
image type and allocates the appropriate amount of memory for the image data. The
SapBuffer::Read function reads the data out of the SapBuffer and into the Mat object’s
data buffer (exportImg.data). The Mat object (exportImg) now has its own
independent copy of the image data that is ready for image processing.

void ExportToOpenCV_Copy(SapBuffer *pSapBuf)
{
 if(pSapBuf == NULL)
 return;

 SapFormat sapFormat = pSapBuf->GetFormat();
 int OpenCV_Type = 0;

 switch(sapFormat)
 {
 case SapFormatMono8:
 OpenCV_Type = CV_8UC1;
 break;
 case SapFormatMono16:
 OpenCV_Type = CV_16UC1;
 break;
 case SapFormatRGB888:
 OpenCV_Type = CV_8UC3;
 break;
 case SapFormatRGB161616:
 OpenCV_Type = CV_16UC3;
 break;
 default:
 sapFormat = SapFormatUnknown;
 break;
 }

 if(sapFormat != SapFormatUnknown)
 {
 // Export to OpenCV Mat object copying SapBuffer data to Mat object
 Mat exportImg;

 exportImg.create(pSapBuf->GetHeight(), pSapBuf->GetWidth(), OpenCV_Type);
 pSapBuf->Read(0, pSapBuf->GetWidth() * pSapBuf->GetHeight(), exportImg.data);

 namedWindow(OPENCV_WINDOW_NAME, WINDOW_NORMAL | CV_WINDOW_KEEPRATIO);

 // Display OpenCV Image
 imshow(OPENCV_WINDOW_NAME, exportImg);

 waitKey(1);
 }
}

	Sapera LT Image Acquisition into OpenCV Processing Buffers
	Overview

	Installation Prerequisites
	OpenCV Version

	Example Program
	SapBuffer Functions and Properties
	SapBuffer Export
	Creating a Mat Object Using SapBuffer Memory Directly
	Creating a Mat Object Using a Copy of SapBuffer Memory

