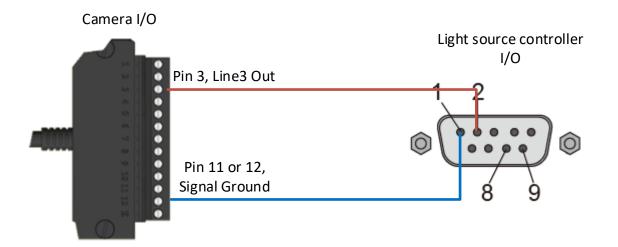


Part of the Teledyne Imaging Group

03-032-20279-00 Application Note for Linea Multiline Camera Sequential Mode

This application note specifically details how the camera sequential mode works with the Revox SLG-150HSP model light source


Linea multiline camera family's ML-FM-08K and ML-HM-16K models have a feature called sequential exposure, which enables users to scan multiple images within a single scan. This feature, combined with a sophisticated light source, improves inspection speeds by a factor of three to four times. A LED strobe light source, such as that from Revox (<u>https://www.revox.jp/en/</u>), SLG-150HSP, is one of the light sources suitable for this application. The following is two example configurations of the Linea ML cameras sequential exposure application in conjunction with the SLG-150HSP light source.

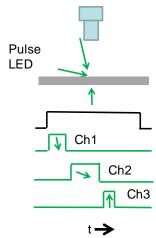
I. Multifield Application

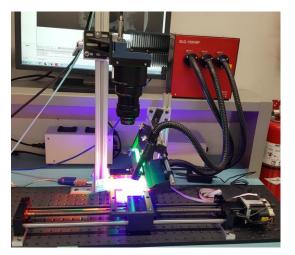
A. Hardware Setup

1. Camera I/O and Light Controller Connection

Use a DB9 female connector to connect the cameras I/O pin3(Line3 Out, the first trigger) and light controllers I/O pin2(trigger input); and connect the Cameras I/O pin 11 or pin 12(signal ground) to the light controllers I/O pin 1(input common).

Note: If using the DB9 connector with built-in cables, make sure the proper pins are connected.

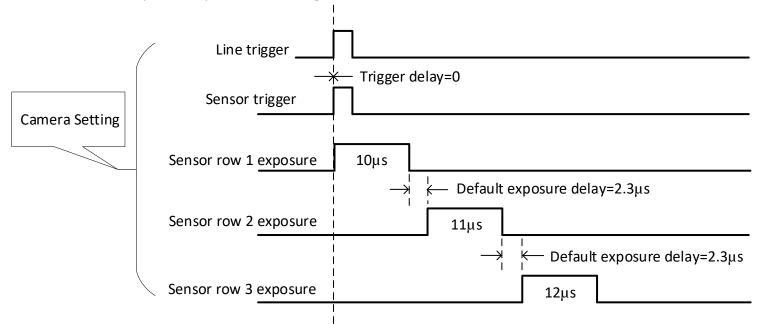

2. Use an Ethernet cable connected to the host PC and the light source controller.

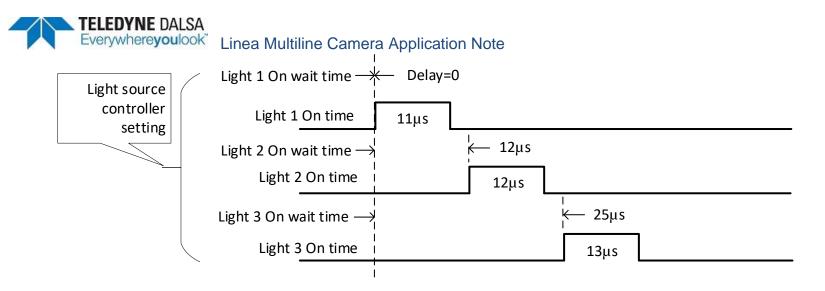


When the light source controller is powered on, , it will be automatically connected to the host PC. If there is no automatic connection, then a manual connection is required. (Refer to the light source manual)

3. Light Guide Setup

Mount light guides as bright field, dark field, and back field, respectively.





4. Light Controller Setup

Assume we set the sequential exposure as following:

Then the light source controller can be set as following:

Set Light Delay time

Save the Revox light control program to any folder in you host machine and double click the icon ^O HSP_CMD</sup> to run the program. Select 'Write On wait time' from Setting Command and type 'WWAIT0000,0012,0025' in the Send Data dialog box, then click Send button.

🕐 SLG-150HSP	×
IP Setting IP Address 192 . 168 . 0 . 2	Send STX`ETX 💌
Port Set	Send <u>D</u> ata WWAIT0000,0012,0025
<u>₩</u> DD ON WD <u>A</u> Setting <u>C</u> ommand Write On wait time ▼ Reading Command	Se <u>n</u> d Trans Datas xWWAIT0000,0012,0025etxz kWWAIT0000,0012,0025etxz
Read On wait time	<u>E</u> nd

By this setting, the light 1, 2, and 3 will get a delayed trigger and it will be delayed by 0 µs, 12 µs, and 25 µs, respectively, so that the firing time match to the sequential exposures. You can input them one by one, e.g. WWAIT1,0000, WWAIT2,0012, etc. refer to following screenshot.

🕐 SLG-150HSP	
IP Setting IP Address 192 . 168 . 0 . 2	Send STX`ETX 💌
Port Set	Send <u>D</u> ata WWAIT2,0012
WDD ON WDA Setting Command Write On wait time	Trans Datas send=-1ystxWWAIT2,0012et recv=0yz
<u>R</u> eading Command Read On wait time ▼	<u>E</u> nd

Set Light On Time

Select 'Read On wait time' from Reading Command and click the Send button to check if the delaying parameters have been set properly or not.

🕐 SLG-150HSP	—
IP Setting IP Address 192 . 168 . 0 . 2	Send STX`ETX 💌
Port Set	Send <u>D</u> ata RWAIT
<u>WDD ON</u> Setting <u>C</u> ommand Write On wait time ▼ Reading Command	Send Trans Datas RWAITetxz xRWAIT0000,0012,0025etxz
Read On wait time	End

Select 'Write on time' from Setting Command drop-down menu and type WONTM0010,0011,0012 in the Send Data dialog box and click the Send button.

TELEDYNE DALSA Everywhereyoulook Linea Multiline Camera Application Note

O SLG-150HSP	
IP Setting IP Address 192 . 168 . 0 . 2	Send STX`ETX 💌
PortSet	Send <u>D</u> ata WONTM0011,0012,0013
WDD ON WDA Setting Command Write on time Reading Command	Send Trans Datas WONTM0011,0012,0013etxz WONTM0011,0012,0013etxz
Read on time	End

0011, 0012, and 0013 represent LED on time of light 1, 2, and 3, respectively. These also can be set one by one, for example, command 'WONTM1,0011' will set the light1 on time to 11µs.

Set Light Intensity

Select 'light intensity' from Setting Command drop-down menu and type 'WDA1023,1023,1023' in the Send Data dialog box and click the Send button. This sets the all three light source outputs to maximum.

🕐 SLG-150HSP	—
IP Setting IP Address 192 . 168 . 0 . 2	Send STX`ETX 💌
PortSet	Send <u>D</u> ata WDA1023,1023,1023
WDD ON WDA Setting Command light intensity	Sen_d Trans Datas stxRDAetxz 'ackRDA1023,1023,1023etxz !3
<u>R</u> eading Command reading out light intensity v	<u>E</u> nd

You can adjust them one by one, for example, command 'WDA1,512' sets the light 1 intensity to half of its maximum.

🕐 SLG-150HSP	
IP Setting IP Address 192 . 168 . 0 . 2	Send STX`ETX 💌
Port Set	Send <u>D</u> ata WDA1,512
WDD ON WD <u>A</u> Setting <u>C</u> ommand light intensity	<u>Trans Datas</u> send=10ystxWDA1,512etxz recv=10yackWDA1,512etxz
reading out light intensity 💌	<u>E</u> nd

B. CamExpert Setup

Parameters		×
Category	Parameter	Value
🗆 Board	Image Width (in Pixels)	16384
Basic Timing	Image Height (in Lines)	128
Advanced Control	Image Left Offset (in Pixels)	0
	Image Buffer Format	Monochrome 8-bit (3 planes) 🔽
External Trigger	Image Flip	Disabled
Image Buffer and ROI	Acquisition Frame Length method	Fix Length
Attached Camera - Xtiu		

Select Monochrome 8-bit(3 planes) from frame grabber interface.

Set Line 0 to False, and set all Line 1, Line 2, and Line 3 to True.

TELEDYNE DALSA Everywhereyoulook Linea Multiline Camera Application Note Parameters Category Parameter Value **Pixel Format** Mono 8 Board Line Select Line 1 **Basic Timing** Line Enable True Advanced Control Line row ID 0

External Trigger	LITETOWID	v	_
External Trigger	Sensor Width	16384	
Image Buffer and ROI	Horizontal Offset	0	
Attached Camera - Xtiu	Output Width	8192	
Camera Information	Height	1	
Camera Control	Binning Horizontal	2	
Digital IO Control	Binning Vertical	1	
Flat Field	Test Pattern	Off	
	AOI Count Horizontal	1	
Image Format	AOI Selector	1	

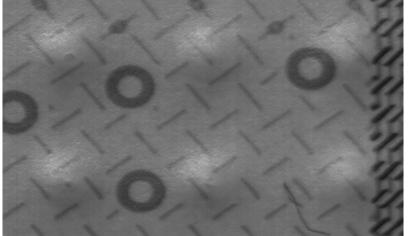
Select sequential from Exposure Mode, and select Planar Mode from TDI Mode. Ensure the default exposure delays(2.34445µs) are unchanged for all three rows. Set sensor row 1, row 2, and row 3 exposure time to 10, 11, and 12 µs, respectively.

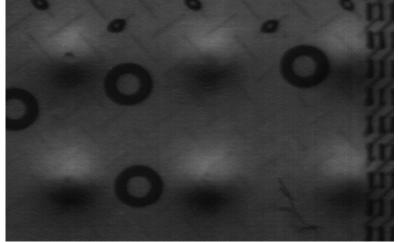
х

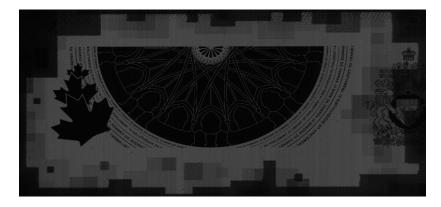
•

Parameters			×
Category	Parameter	Value	^
Board	Device Scan Type	Linescan	
Basic Timing	Sensor Color Type	Monochrome	
Advanced Control	Acquisition Line Rate	10000.0	
	Measured Line Rate	10000	
External Trigger	Refresh Measured Line Rate	Press	
Image Buffer and ROI	TDI Mode	Planar mode	
Attached Camera - Xtiu	TDI Stages	Not Enabled	
Camera Information	Full Well Mode	Not Enabled	
Camera Control	Exposure Mode	Sequential	-
Digital IO Control	Exposure Time Selector	All	
Flat Field	Exposure Delay	2.344445	
Image Format	Exposure Time	10.0	
-	Direction Source	Internal	
File Access Control	Internal Scan Direction	Forward	
Transport Layer	Gain Selector	System Gain	
Acquisition and Transfer C	Black Level	0	
	Gain	1.0	

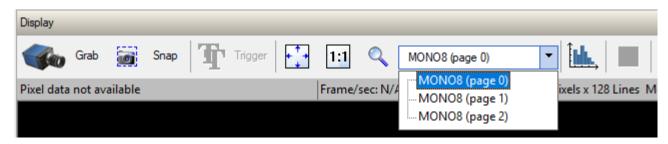
Select Line 3 from Line Selector and choose On from Output Line Source. This enables the GPIO Pin3 to sends out line trigger signals to the outside world of the camera, in this case, it is sent to the light source controller. Set the Output Line Pulse Delay to 0, and set the Pulse Duration to an appropriate number, for example, 20µs. In general, 1+µs works fine, but for the sake of antinoise, we recommend that you set it to a larger value as long as the line period allows.



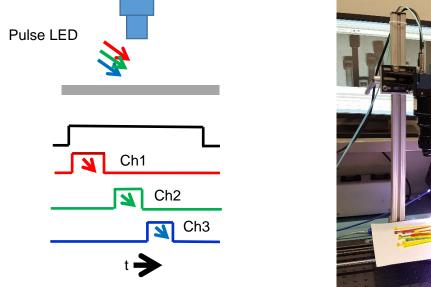

Parameters - Visibility: Expert		×
Category	Parameter	Value
🗆 Board	Trigger Mode	Internal
Basic Timing	Trigger Source	CLHS In
Advanced Control	Trigger Input Line Activation	Rising Edge
	Rotary Encoder Direction	Counter Clockwise
External Trigger	Rotary Encoder Output Mode	Position
Image Buffer and ROI	Input Line Debouncing Period	0.0
Attached Camera - Xtiu	Rotary Encoder Multiplier	1
Camera Information	Rotary Encoder Divider	1
Camera Control	Trigger Delay	0.0
Digital IO Control	Line Selector	Line 3
Flat Field	Output Line Source	On
Image Format	Output Line Pulse Delay	0.0
Image Format	Pulse Duration	20.0
File Access Control	Line Inverter	Off
Transport Layer	Output Line Software Command	High
Acquisition and Transfer C	Refresh Line Status	Not Enabled
	Line Status	High


II. Sample Images

Hardware and software settings above allow you to scan three fields: bright field, dark field, and back field, images within single scan. The following images are sample images of a 10-dollar Canadian banknote.



Upper-left: bright field image of a Canadian banknote. Upper-right: dark field image of a Canadian banknote. Left: back field image of a Canadian banknote


You can switch views with the planar dropdown selector in the CamExpert.

With current CamExpert version 8.4x, Users cannot save multi-plane image as the standard formats, such as .tiff, .bmp, etc., but can only save as .crc format which can then be loaded by the CamExpert 8.4x. We provide the CRC format to Users, so that Users can write their own code to interpret the images. Please contact your local Teledyne DALSA Technical Support Department for further details.

II. Multispectral Application

A Multispectral application system is very similar to multifield application system where the only difference is the illumination method. Other than threefield illumination, multispectral imaging requires all lights' incident angles to be equal or very close in alignment. The Revox light source, SG-150HSP with a 3in-1 light guide makes this task very easy to accomplish.

The light source can provide red, green, and blue lights. With exactly the same settings in above multifield application, the three lights will illuminate the object in RGB order and therefore, the User can get three spectral images within a single scan like below (from left R, G, and B).

Image from the red light channel

Image from the green light channel

Image from the blue light channel