



#### **Features**

- Fixed gain of +2 or -1
- Supply voltage 1.5 to 5V
- Load impedance  $\Box$  16 $\Omega$
- SNR<sub>@5mW</sub> 101dB
- THD<sub>@5mW,1kHz</sub> 0.03%
- 0.125mm<sup>2</sup> in 0.14µm CMOS

# **Applications**

- Cellular Phones / Music Phones
- Smart Phones
- Portable Media / MP3 Players
- Portable CD / DVD Players

## **General description**

This data sheet describes a general purpose headphone amplifier (HPA) in a 140nm CMOS process.

The amplifier can drive loads down to  $16\Omega$  and with a supply voltage ranging from 1.5 Volt to 5 Volt

With the internal feedback resistors the gain of the amplifier is +2 or -1 depending on which input is used

# **Block diagram**

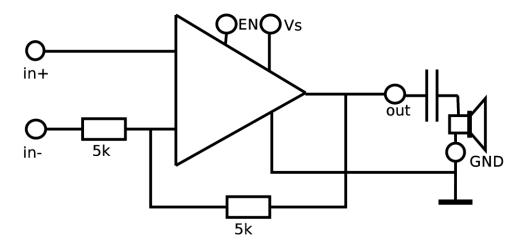



Figure 1: Block diagram headphone amplifier

CRDAC 12b – Revision F3 Page 1 of 5



### 12 bit charge-redistribution DAC

#### **Detailed description**

The headphone amplifier (HPA) is a class AB amplifier in a standard 180nm CMOS process. The input requires a DC bias network to set the output voltage at half the supply voltage Vs/2. This biasing network must be decoupled to ground for an optimal PSRR.

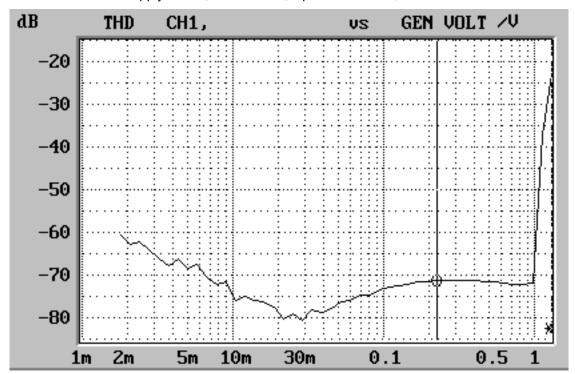
Applications with DC coupling ('true ground' application) are possible when a positive and a negative supply voltage are used (+/-0.75V to +/-2.5V). It must be noticed that the substrate of the chip is connected to the negative supply pin. Combining the HPA with other circuits that are designed for a single supply voltage on the same chip is not possible when those circuits make use of the same 'signal' ground. Such a combination is possible when a P-well is added for the NMOS transistors as a process option.

#### **Specifications**

 $V_{S+}$ =1.8V,  $R_{LOAD}$ =32 $\Omega$ ,  $P_{OUT@1\%THD}$ , T=25°C unless otherwise noted.

| Parameter                    | Description                                                        | Min | Тур   | Max | Units |
|------------------------------|--------------------------------------------------------------------|-----|-------|-----|-------|
| Supply                       |                                                                    |     |       | '   |       |
| V <sub>S</sub> +             | upply voltage 1.5 1.8                                              |     | 5     | V   |       |
| IQ                           | Quiescent current                                                  |     | 1     |     | mA    |
| Performance                  |                                                                    |     |       |     |       |
| Pout                         | Output power 10                                                    |     |       | mW  |       |
| P <sub>OUT@16Ω</sub>         | Output power at $16\Omega$ , $V_{S+} = 1.8V$                       | 19  |       | mW  |       |
| P <sub>OUT@16Ω,Vs=3.3V</sub> | Output power at $16\Omega$ , $V_{S+} = 3.3V$                       |     | 69    |     | mW    |
| THD                          | Distortion at Pout = 5 mW, 1 kHz                                   |     | 0.03  |     | %     |
| SNR <sub>MAX</sub>           | Signal to Noise Ratio at P <sub>OUT</sub> = 5 mW, 1 kHz BW = 20kHz |     | 101   |     | dB    |
| V <sub>NOISE</sub>           | Output noise, BW = 20kHz                                           |     | 2.5   |     | μV    |
| PSRR@1kHz                    | Power Supply Rejection Ratio at 1kHz                               |     | 51    |     | dB    |
| PSRR@217Hz                   | Power Supply Rejection Ratio at 217Hz                              |     | 51    |     | dB    |
| RLOAD                        | Allowed load impedance                                             | 16  |       |     | Ω     |
| Implementation               | 1                                                                  |     |       |     | •     |
| A <sub>C18</sub>             | Chip area in CMOS 140nm                                            |     | 0.125 |     | mm²   |

Table 1: Specifications


CRDAC 12b – Revision F3 Page 2 of 5



### **Typical Characterisics**

# Measured THD inverting mode (gain=-1)

Supply = 3.3V,  $R_{LOAD}$  = 32 $\Omega$ , input = 1kHz sine, T = 25°C



#### Port list

| Port name | width | Description          |
|-----------|-------|----------------------|
| in+       | 1     | Non-inverting input  |
| in-       | 1     | Inverting input      |
| out       | 1     | Output               |
| EN        | 1     | Enable (active high) |
| Vs        | 1     | Positive supply      |
| GND       | 1     | Ground               |

Table 2: Port function descriptions



# CRDAC 12b

12 bit charge-redistribution DAC

#### **Deliverables**

The product can be delivered as a single IP component for customer integration or Axiom IC engineers can integrate the product as part of a SoC engagement. A GDSII layout (version F1) is available for these purposes.

## **Revision history**

| Revision | Date:      | Reason for revision |
|----------|------------|---------------------|
| F1       | 2010-04-27 | Initial version     |
| F2       | 2017-07-20 | Template update     |

CRDAC 12b – Revision F3 Page 4 of 5





# For more information about Teledyne DALSA visit our Web Site at

http://www.teledynedalsa.com/semi/mixed-signal/

or contact us at

Teledyne DALSA Enschede
Colosseum 28
7521 PT Enschede
the Netherlands
+31 (0)53-7990700
info.enschede@teledyne.com

Information relating to products and circuits furnished herein by Teledyne DALSA B.V. or its subsidiaries ("Teledyne DALSA") is believed to be reliable. However, Teledyne DALSA assumes no liability for errors that may appear in this document, or for liability otherwise arising from the application or use of any such information which may result from such application or use. The products, their specifications and the information appearing in the document are subject to change by Teledyne DALSA without notice. Trademarks and registered trademarks are the property of their respective owners.

© 2018 Teledyne DALSA B.V. - All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE

CRDAC 12b – Revision F3 Page 5 of 5