

### Comprehensive Study of Properties and Characteristics of In-Situ Phosphorous Doped Poly-Silicon Developed in LPCVD Furnace

### (USA Patent 7,144,750 & USA Patent 7,160,752)

### **Mujahid Choudhury**

#### Vincent Fortin, Robert Antaki, Annie Dallaire, and Luc Ouellet

June 03, 2008





# Agenda

- ✤ISDP development in custom built cross flow LPCVD furnace
- ✤ISDP properties for different process and anneal conditions
- Flexibility to control stress from highly tensile of as-deposited ISDP film and tuning of stress in a controlled fashion either slightly tensile or slightly compressive
- ISDP thickness considered is 0.3um, 1.5um, 2um and multiple depositions of 1.5um up-to 7.5um for different MEMS device applications
- Comparison of ISDP stress between standard and cross flow LPCVD furnace

Conclusions

### **Test Wafer Orientation in Cross-flow LPCVD Furnace**

DALSA



#### **Figure: Schematic diagram of cross flow LPCVD furnace**



**Figure: Test wafer orientation in furnace for ISDP property evaluation** 



### **ISDP** Thickness and Stress Measurement



**Figure:** 46point data per wafer for raw thickness data analyses



**Figure: 334point data per wafer** for raw stress data analyses









- Resistivity of ~0.6m-ohm-cm is achieved after O2/N2 anneal
- Stress can be controlled from highly tensile to slightly tensile or slightly compressive by different types of anneal

**DALSA** 

### **Impact of Anneal on Surface Roughness of ISDP**



#### Figure: As-deposited ISDP (1.5um)



Figure: ISDP after O2/N2 anneal (1.5um)



#### Figure: ISDP after N2 anneal (1.5um)

- Anneal either in N<sub>2</sub> or in O<sub>2</sub>/N<sub>2</sub> environment has almost no impact on surface roughness
- No CMP operation is required for subsequent processing steps after ISDP depositions because of very low surface roughness



### **SIMS Analyses of 0.5um ISDP**



#### a) As-deposited ISDP



b) ISDP after O<sub>2</sub>/N<sub>2</sub> anneal

| Elements                                          | Concentration (%)<br>As-deposited ISDP | Concentrations (%)<br>ISDP after O2/N2 anneal |
|---------------------------------------------------|----------------------------------------|-----------------------------------------------|
| Р                                                 | 0.6%                                   | 0.6%                                          |
| 0                                                 | 0.004 - 0.006%                         | 0.0002%                                       |
| Н                                                 | 0.01 - 0.002%                          | 0.001%                                        |
| N                                                 | 0.00002%                               | 0.00002%                                      |
| O and H contents significantly drops after anneal |                                        |                                               |

**DAISA** Impact of Process Conditions on ISDP Characteristics



# **Impact of Process Conditions on ISDP Characteristics**



**Figure: Impact of process conditions on as-deposited ISDP (1.5um)** 

- Temperature is the main factor of the Pareto to control stress of as-deposited ISDP and ISDP after N2 anneal
- Stress of ISDP after O2/N2 anneal is effected not only by temperature but also by PH3 flow-rate



### **Flexibility to Control Stress**





As-deposited ISDP→ Different process conditions → ISDP after O2/N2 anneal



Highly flexible process to tune stress in a controlled fashion from highly tensile to slightly tensile or slightly compressive

**Raw stress data analyses** 

ISDP after N2 anneal  $\rightarrow$  Different process conditions

### **DAISA** Comparison of Stress of ISDP after O2/N2 Anneal between Standard and Cross-flow LPCVD furnace





Figure: Comparison of average stress variation across the load

Figure: Comparison of raw stress data variation across the load

Cross flow LPCVD furnace shows better stress control of ISDP across the load and run-to-run as well for as-deposited ISDP and ISDP after different conditions of anneal for thickness of 0.3um ~2.0um



### **Evaluation of ISDP Properties**







# Conclusions

- Very low resistivity of as-deposited ISDP of ~2.5m-ohm-cm is achieved. Resistivity of ISDP is further reduced to 0.6m-ohm-cm after O2/N2 anneal. Resistivity can be tuned mainly by PH3 flow-rate.
- Very low surface roughness of 3.5nm for as-deposited ISDP, slightly increased by anneal to 4.7nm enables to pursue subsequent processing steps for MEMS application without CMP operations
- Highly flexible developed ISDP process enables to tune stress in a controlled fashion from highly tensile in the range of 228~357MPa to slightly tensile in the range of 28~ 50MPa or to slightly compressive in the range of -4 ~ -23MPa
- Flexibility of stress control, low resistivity, and low surface roughness, thereby avoiding CMP operation make DALSA's developed ISDP process ideal structural material for MEMS applications



## Acknowledgment

- Michel Pomerleau for acquisition, installation, and testing of hardware
- \*Dominic Carrier for the AFM analyses for surface roughness measurements
- Muriel Dardalhon for ISDP properties evaluation by test structures
- Sylvie Champoux, Dave Rioux, David Turcotte, Kathy Feehan for engineering support
- \*Robert Sirois, Manon Daigle, and Sonia Smith for operation help
- ✤Jonathan Lachance for device performance evaluation
- \*Francois Bedard for wet etch recipe development to evaluate stress of ISDP
- All diligent DALSA coworkers who helped with the wafers processing and results extraction.