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Abstract—Harmonic downmixing is an important effect that
must be taken into account when performing sensitive spectrum
sensing using direct-conversion receivers. When the local oscilla-
tor waveform contains harmonics of the fundamental frequency,
the quadrature mixer in the receiver will downconvert RF
signals found at these harmonics, termed harmonic images, in
addition to the RF signals around the fundamental frequency.
The harmonic images will be detected by power spectral density
based sensing algorithms and will cause certain parts of the
desired spectrum to be mistakenly flagged as occupied. Although
harmonic downmixing is important to consider, it is an often
negelected effect.

This paper presents a harmonic rejection spectral sensing
technique, that exploits two quadrature mixers. The mixers work
with different LO frequencies, which decorrelate the harmonic
images so that cross-correlation of their outputs renders an
improved spectral estimate. In addition to rejecting the harmonic
images, spurious signals entering the receiver through the analog
baseband inputs will also be rejected. The frequency resolution
of the spectral estimate is scalable and the rejection of the
harmonic images increases 15 dB per 1000-fold increase of the
correlation time. The complexity of the algorithm is analyzed and
its performance is shown by means of simulations. The effect of
I/Q imbalance is also taken into account.

I. INTRODUCTION

Cognitive radios ideally support a large frequency range,
one that spans multiple octaves. Generating the local oscil-
lator (LO) signals for such a wide range of frequencies is
predominantly achieved using digital circuits[1]. For instance,
digital frequency dividers are used to divide the output of a
high-frequency oscillator. In this way, a frequency synthesizer
that spans a multiple-octave frequency range can be realized.
However, such a frequency synthesizer generates a digital
square-wave LO signal, which contains many harmonics in
addition to the fundamental frequency.

The direct-conversion receiver has a low external com-
ponent count compared to other receiver architectures, such
as the superheterodyne. It is therefore the architecture of
choice when high-integration and low-cost are desired. Such
features are important in consumer applications, such as
PDAs, mobile phones and laptops. However, when receiver’s
mixers are driven by digital circuits, they suffer from

harmonic downmixing1.
Harmonic downmixing is an undesirable effect whereby RF

signals found at multiples of the local oscillator frequency,
termed harmonic images, are downmixed to baseband, in addi-
tion to the desired signal. The effect is caused by harmonics in
the local oscillator signal, which have significant strengths for
a square-wave LO. The harmonic images cause interference to
the desired signals and will degrade the bit-error rate (BER)
at the decoder, or even make the desired signals undecodable.
Harmonic downmixing also causes problems in spectrum sens-
ing applications, such as found in cognitive radio networks.
The spectrum sensing algorithm, which is often based on
energy detection or power spectral density measurements, will
mistake a harmonic image signal, which is outside the band
of interest, for a signal that is within the band of interest. As
a result, certain parts of the spectrum are erroneously flagged
as occupied while they are empty in reality.

The effect of harmonic downmixing is neglected in most
papers as they assume perfect sinusoidal LO signals and
perfect multiplying mixers, or sufficient RF filtering. However,
sufficient RF filtering is expensive, bulky and can be difficult
to implement. A different approach could be to remove the
harmonics from the LO signal by filtering. However, this leads
to the same problems of bulky, expensive filters as the RF
filtering case. Clearly, these solutions are not desirable when
aiming for low-cost or embedded applications.

Also note that a perfectly sinusoidal LO signal does not
always solve the harmonic downmixing problem because
many practical mixer circuits, such as switching mixers, cause
nonlinear distortion of the LO signal. These distortions add
harmonics to the LO signal, which again leads to harmonic
downmixing.

Disentangling the harmonic images from the desired signal
by wideband sampling of the mixer output, which contains
multiple versions of the harmonic images and the desired
signal, is possible in theory. The sampling bandwidth required
would be at least x + 1 times the LO frequency, where x is
the number of harmonic images to be removed. Unfortunately,

1All radio architectures can suffer from harmonic downmixing. Here we
limit ourselves to direct-conversion receivers as the harmonic downmixing
problem is most severe in such receivers.



such wideband analog-to-digital converters (ADCs) are beyond
the current state of the art, except for very low LO frequencies.

Given the above, it is clear that a different way of dealing
with harmonic downmixing is needed.

In this paper, we present an algorithm based on cross-
correlation of two baseband signals, r1 and r2. Both contain
signals from the desired spectrum and from the harmonic im-
ages. A frequency offset ∆f is used in the analog frontend to
frequency shift the harmonic images and the desired signal by
different amounts. After a frequency shift, −∆f , in the digital
domain, the desired signal in r1 and r2 cross correlate. This
principle allows correct spectrum sensing under conditions
where harmonic images are present.

This paper is organized as follows. In Section II, a mixer
model is developed that shows how multiple RF signals are
downmixed to baseband and how they relate to the Fourier
series of the LO waveform. Then, the model is extended to
quadrature mixers. In Section III, the principle of using a
frequency offset to decorrelate the desired signals from the
harmonic images is presented. In addition, the sensing algo-
rithm based on cross-correlation is explained and is formulated
in terms of the quadrature mixer model from Section II. In
Section IV, the performance of the algorithm is analyzed and
evaluated using simulations, while the final section offers the
conclusions.

II. A MIXER MODEL INCORPORATING HARMONIC
DOWNMIXING

When a multiplying mixer’s LO port is driven by a pulse-
like signal, such as a digitally generated square wave, multiple
frequencies present at the RF port are downconverted to
baseband. In addition to the desired mixing product, additional
mixing products appear at the mixer’s baseband output. While
the desired mixing product is governed by the fundamental
frequency of the LO signal, the other products are governed
by the higher harmonics present in the LO signal. If a
switching mixer is used instead of a multiplying mixer, the
same argument holds as the effective LO waveform is pulse-
like regardless of the actual LO waveform.

RF 

Port

IF/Baseband 

Port

LO 

Port

Fig. 1. A mixer driven by a square wave at the LO port.

The mixing products found at the IF, or baseband, output
of the mixer, depend on the Fourier series of the effective LO
waveform. Given an RF signal xRF (t) and an effective LO
waveform sLO(t), the signal at the output, y(t) of a mixer is
given by the following equation:

y(t) = xRF (t) · sLO(t) (1)

The RF signal can be written as a sum of baseband-
equivalent signals, where each baseband-equivalent signal rep-
resents a piece of RF spectrum centered around the harmonics
of the LO waveform. In this way, each mixing product can be
described separately. Given a set of band-limited baseband-
equivalent signals zp(t), where p ∈ [1, 2, 3, . . . ,∞〉, the RF
signal is expressed as the following sum:

xRF (t) = <

{ ∞∑
p=1

zp(t) · ej·2π·p·fLO·t

}
, (2)

where < denotes taking the real part of its complex argument
and fLO is the LO frequency in Hertz. The signal zp(t)
represents a part of the RF spectrum, namely RF signals found
around a frequency of p · fLO Hz.

The < operator may be removed by realizing that <{x} =
1
2 (x + x∗), where ()∗ denotes the complex conjugate. There-
fore, (2) can be simplified to give:

xRF (t) =
1
2

∞∑
p=1

(
zp(t) · ej·2π·p·fLO·t + z∗p(t) · e−j·2π·p·fLO·t)

(3)
Given that the LO waveform is periodic, it is fully

described by its complex-valued Fourier series coeffcients
{c0, c1, . . . , c∞}:

sLO(t) = c0 +
∞∑

p=1

(
cp · ej·2πfLO·p·t + c∗p · e−j·2πfLO·p·t) (4)

By combining (3) and (4), an expression is obtained that
shows the relation of the downmixed products to the baseband-
equivalent signals zp(t) and the Fourier coefficients of the
mixer’s LO waveform:

y(t) =
1
2

∑
p=1

(
c∗p · zp(t) + cp · z∗p(t)

)
(5)

+ high frequency mixing products.

In a direct-conversion receiver, the high frequency mixing
products in (5) are removed by a post-mixer filter and/or
the anti-aliasing lowpass filters before the A/D converters. In
receiver applications, (5) may thus be simplified to:

y(t) =
1
2

∑
p=1

(
c∗p · zp(t) + cp · z∗p(t)

)
(6)

The purpose of a receiver is to recover z1(t), which is the
desired signal spectrum. Note that, in the general case, z1(t)
is a complex-valued signal, while y(t) is real-valued. It is
therefore not possible to fully recover z1(t) from y(t) alone.
Recovery of z1(t) is only possible by employing quadrature
techniques.

A. Quadrature downconversion
A quadrature receiver uses two mixers to recover z1(t),

where each mixer is driven by a different LO waveform. The
two LO waveforms have the same shape but they are phase-
shifted by 90 degrees with respect to each other. The phase-
shift allows z∗1(t) to be removed while retaining the desired
signal spectrum z1(t).
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Fig. 2. A quadrature downmixer employing two mixers. The LO signals
fI(t) and fQ(t) are 90-degree out of phase with respect to each other.

We will now apply the mixer model to a quadrature receiver
architecture and show the dependence of the received baseband
signal r(t), given the baseband-equivalent signals zp(t), and
the Fourier series coefficients of the two LO waveforms.
For generality, we use different variables for the Fourier
coefficients of the two LO waveforms, which allows the LO
waveforms to differ in shape and not only in phase.

Figure 2 shows the quadrature downconverter principle.
Given the mixer model (6), the in-phase output yI(t) and the
quadrature phase output yQ(t) can be written as:

yI(t) =
1
2

∑
p=1

(
c∗p · zp(t) + cp · z∗p(t)

)
yQ(t) =

1
2

∑
p=1

(
d∗p · zp(t) + dp · z∗p(t)

)
, (7)

where cp and dp are the Fourier series coefficients of the
LO signals fI(t) and fQ(t), respectively. The two real-valued
outputs yI(t) and yQ(t) form a complex-valued baseband
signal r(t), where r(t) may be expressed as:

r(t) = yI(t) + j · yQ(t)

=
1
2

∑
p=1

(
(cp − j · dp)∗ · zp(t) + (cp + j · dp) · z∗p(t)

)
(8)

As stated previously, the purpose of a receiver is to recover
the baseband signal, or spectrum, z1(t). By examining (8), it
is clear that this is possible when c1 = −j · d1 so that z∗1(t)
is removed and cp = 0, dp = 0 for any p > 1 so that the
harmonic images are removed. Note that the conjugated terms
z∗p(t) constitute interference and are caused by I/Q imbalance.
We refer to them as I/Q imbalance images. Appendix B gives
the I/Q imbalance image suppression as function of cp − j ·dp

and cp + j · dp.
Unfortunately, the above requirements are only met when

the effective LO waveform is a perfect sine wave. A mixer
based on switches cannot be used as this always leads to
a pulse-like effective LO waveform. In fact, only a perfect
multiplying mixer driven by a perfect sine wave will achieve
the conditions. Unfortunately, both are impossible to realize
exactly and very difficult to approximate well in practice.

Traditionally, receivers employ bandpass filters at the RF
port of the mixer to remove the harmonic image signals.

Direct-conversion receivers with a wide frequency range, such
as desired for cognitive radios, would require a tunable RF
filter [2] or a bank of selectable bandpass filters. However,
a highly-selective tunable filter with a wide tuning range is
very challenging, if not impossible, to make, owing to the
many tunable components that are required. In addition, the
frequency response of such filters tends to deviate from the
optimum shape as they are tuned across the band, thereby
reducing their selectivity. Also, a bank of selectable bandpass
filters is bulky, expensive and therefore unattractive in low-cost
or highly integrated systems.

Given the above, it would seem that switching mixers or
pulse-like LO waveforms cannot be used effectively in direct-
conversion receivers. However, analog multi-path techiques
exist that employ multiple mixers in parallel to obtain an ef-
fective LO waveform that lacks certain harmonics. Therefore,
certain harmonic images, most notably the 3rd, 5th and all even-
order harmonic images, are suppressed, thereby reducing the
demands on the RF filter. This technique was demonstrated
by [3] for transmitters and by [4] for receivers. The multi-
path technique offers a typical suppression of around 40 dB.
This figure is limited by mismatches within the analog circuits.
To further enhance the harmonic image suppression of the
analog frontend, we have proposed a digital compensator
based on blind adaptive signal processing which increases the
suppression of the strongest harmonic image [5], typically by
40 dB.

As the multi-path technique does not completely remove
the targeted harmonic images, there will be residual energy
from the harmonic images present in the baseband signal r(t).
Performing spectrum sensing using r(t), based on the power
spectral density, leads to the detection of signals related to
the harmonic images, which are false positives as they these
signals do not come from the band of interest, z1(t).

In this paper we describe a method for performing spectrum
sensing based on cross-correlation of two baseband signals.
The method detects the presence of signals in the desired
spectrum2 while it rejects signals from the harmonic images.

III. SPECTRUM SENSING BASED ON TWO BASEBAND
SIGNALS

The signal detection scheme is based on obtaining two
discrete-time observations of the RF spectrum. The observa-
tion signals, r1(n) and r2(n) are produced by two quadrature
mixers, as shown in Fig. 3. The local oscillators LO1 and
LO2 are tuned to fLO and fLO + ∆f Hz, respectively.
The A/D converters use a sampling rate of Fs samples per
second. Therefore, the bandwidth, Wbb, of each complex-
valued baseband signal is equal to Fs.

Owing to harmonic downmixing, r1(n) represens multiple
parts of the RF spectrum simultaneously. In addition to rep-
resenting an RF part centered around fLO Hz, it will also

2In normal receiver applications we wish to obtain the desired signal. In
spectrum sensing, however, we wish to obtain a desired spectrum, regardless
whether there is an RF signal present or not. Note that the terms refer to the
same baseband-equivalent signal z1(t).
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Fig. 3. The proposed spectrum sensing frontend, which produces two
discrete-time complex-valued baseband outputs r1(n) and r2(n).

represent RF signals centered around k · fLO Hz, where k is
any positive integer. Or more precisely, r1(n) contains signals
from the following parts of the RF spectrum:

{
k · fLO + x

∣∣∣∣ |x| <
1
2
Wbb, k ∈ [0, 1, 2, . . . ,∞〉

}
(9)

The second baseband signal, r2(n) is generated using an LO
frequency of fLO + ∆f Hz, where ∆f is a frequency offset.
In effect, r2(n) represents a different part of the spectrum,
namely:

{
k · (fLO + ∆f) + x

∣∣∣∣ |x| <
1
2
Wbb, k ∈ [0, 1, 2, . . . ,∞〉

}
(10)

By comparing (9) to (10), it can be seen that the harmonic
images (k > 1) experience a greater frequency shift, namely
(k − 1) · ∆f more, than the desired signal spectrum (k = 1).
This effect is exploited by our algorithm to discern the desired
signal spectrum from the harmonic images.

By choosing ∆f to be much smaller than Wbb, a large part
of the desired signal spectrum in r2(n) overlaps with that in
r1(n). The overlapping part is Wbb − 2∆f Hz wide. Figure 4
illustrates the different shifting amounts of each harmonic
image caused by the frequency offset. The desired signals,
shown in black, shift by ∆f , while the second harmonic image
signal, shown in white, shifts by twice that amount.

We will now restate the above in a mathematical sense.

A. Describing r1(n) and r2(n)

The baseband signal r1(n) can be written as a weighted
sum of the desired signal spectrum z1(n) and the harmonic
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2
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Fig. 4. Position of r1(n) and r2(n) in the RF spectrum and their
corresponding baseband spectra.

images {zp(n) | p > 1}:

r1(n) =
∞∑

p=1

αp · zp(n) + βp · z∗p(n), (11)

where αp = (cp− j ·dp)∗ and βp = (cp + j ·dp). Furthermore,
cp and dp are the Fourier series coefficients of the quadrature
mixer associated with LO1.

The second baseband signal, r2(n), can be written as a
weighted sum of different baseband-equivalent signals, z̃p.

r2(n) =
∞∑

p=1

εp · z̃p(n) + γp · z̃∗p(n), (12)

where εp = (c̃p − j · d̃p)∗ and γp = (c̃p + j · d̃p). In addition,
c̃p and d̃p are the Fourier series coefficients of the quadrature
mixer associated with LO2.

As zp(n) and z̃p must partially overlap in the RF frequency
domain, z̃p is also partially defined by zp(n) and their relation
can be described as follows:

z̃p(n) = Fp

{
zp(n) · e−j2π·fd·p·n

}
+ additional image components, (13)

where fd = ∆f
Fs

and the Fp{·} operator filters any components
that are not shared by both pth-order baseband signals zp

and z̃p. It is not neccessary to define the additional image
components in detail, as they will not correlate with zp(n).
Only their combined variance, σ2

add, is of interest.
Given the signal descriptions presented above, we proceed

to apply our algorithm, which is based on cross-correlation.

B. Cross-correlation based signal detection

Before applying a cross-correlation algorithm to r1(n) and
r2(n), which detects the signal power of common signals
in each subband, the desired spectrum within r2(n) must
be frequency aligned. As shown by (13), the desired signal
spectrum z1(n) is offset by ∆f with respect to z̃1(n). By



applying a frequency translation to r2(n), a frequency-aligned
version, s(n) is obtained:

s(n) = r2(n) · ej·2π·fd·n

+ additional image components (14)

Note that the frequency shift caused by (14) is common for
all signals within r2(n). Equation (14) can be written in terms
of the baseband signals zp(n) using (13):

s(n) =

{ ∞∑
p=1

εp · z̃p(n) + γp · z̃∗p(n)

}
· ej·2π·fd·n

+ additional image components, (15)

which can be further expanded to:

s(n) =

{ ∞∑
p=1

εp · Fp

{
zp(n) · e−j2π·fd·p·n

}}
· ej·2π·fd·n

+

{ ∞∑
p=1

γp · Fp

{
z∗p(n) · ej2π·fd·p·n

}}
· ej·2π·fd·n

+ additional image components (16)

Moving the frequency translation into the sum leads to:

s(n) =
∞∑

p=1

εp · Fp

{
zp(n) · e−j2π·fd·(p−1)·n

}
+

∞∑
p=1

γp · Fp

{
z∗p(n) · ej2π·fd·(p+1)·n

}
+ additional image components (17)

Note that for p = 1, (17) shows that z1(n) no longer has a
frequency translation. However, owing to the fact that z1(n) is
not represented in its entirety by r2(n) (and therefore s(n)),
the Fp{·} operator is still needed. As stated previously, r2(n)
and r1(n) overlap by Wbb − 2∆f Hz. Also note that the I/Q
imbalance image, z∗1(n), in s(n) does not align with itself in
r1(n). The same holds for the harmonic images (p > 1).

The signals r1(n) and s(n) are decomposed into sub-
bands by a filterbank so that each subband can be cross
correlated separately thereby producing frequency dependent
cross-correlation information. The decomposition can be done
efficiently using the Fast Fourier Transform (FFT). The FFT
can be viewed as having N parallel subband channels, which
share a common input x(n). A single channel is shown in
Fig. 5.

Each channel consists of a complex multiplier, an N-point
FIR filter H and a decimation-by-N stage. A new subband
output, X(k) is produced for every N input samples of x(n).
The impulse response of the filter H is an N-point all-one
vector, [1, 1, 1, . . .], known as a rectangular window. It is well-
known that the bin-to-bin isolation of the rectangular window
is poor as the first sidelobe is only 13 dB down, and that
applying a non-rectangular window to the FFT input vector,
[x(n) . . . x(n + N − 1)], allows trading frequency resolution
for better isolation.

x(n)

e
-j·2π·n·k/N

H ↓N X(k)

To other channels

Fig. 5. A time domain description of the kth bin, or channel, (out of N
bins/channels) of an N-point FFT. Each channel consists of a complex mixing
operation, a filter H and a decimation-by-N stage.

As the main focus of this paper is not on filter banks, we
will not go into the window design in great detail. We refer
to [6] and for a thorough treatment of filter banks and to [7]
for their application in cognitive radios.

Here, we limit ourselves to mention that we apply a Nutall
window [8] given by (18), which has the first sidelobe at -
93.3 dB. Unfortunately, it offers a frequency resolution which
is four times lower. Figure 6 shows the spectrum of the rectan-
gular window and the Nutall window, where the differences in
mainlobe width (which determines the frequency resolution)
and sidelobe level (which determines the bin-to-bin isolation)
become evident.
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Fig. 6. The spectrum of the rectangular window and a Nutall window, both
are N=32 points long.

hnutall(n) = a0 − a1 · cos
(

2π · n
N − 1

)
+ a2 · cos

(
4π · n
N − 1

)
− a3 · cos

(
6π · n
N − 1

)
(18)

a0 =0.355768 a1 = 0.487396
a2 =0.144232 a3 = 0.012604

Given an N-point FFT and the Nutall window, each subband
is approximately 8·Wbb

N Hz wide.
We proceed by cross correlating the kth subband of r1(n),

which is denoted by xk(i), with the kth subband of s(n), which
is denoted by yk(i). As there are N subbands, the valid range



of k is [0, . . . , N−1]. Note that the sampling rate of xk(i) and
yk(i) has been reduced to Fs

N because of the decimation-by-N
of the FFT, hence the need for the new time index, i.

The zero-lag cross-correlation of the complex signals xk

and yk is defined as:

Rxk,yk
= E{xk · y∗

k}, (19)

where E{} denotes the expectation operator.
Assuming that xk and yk are stationary ergodic processes,

their cross-correlation can be estimated based on a limited
number of samples. Given N samples of xk and yk, the
following equation is used to obtain an unbiased estimate
R̂xk,yk

of Rxk,yk
:

R̂xk,yk
=

1
N

N−1∑
i=0

xk(i) · yk(i)∗ (20)

See Appendix A for proof relating to the unbiasedness of the
estimator.

Let xk denote the signals in the kth subband of r1, yk denote
the signals in the kth subband of s, and let zp,k be the signals
in the kth subband of the pth harmonic image. By choosing ∆f
to be a multiple of the subband spacing, Wbb

N , we can write

xk(i) =
∞∑

p=1

αp · zp,k(i · N) + βp · z∗p,N−k−1(i · N) (21)

and

yk(i) =
∞∑

p=1

εp · Fp

{
zp,k+(p−1)·o(i · N)

}
+

∞∑
p=1

γp · Fp

{
z∗p,N−k−1−(p+1)·o(i · N)

}
+ additional image components, (22)

where o is ∆f expressed in the number of subband channels:

o =
N · ∆f

Wbb
(23)

Note that the subband index can go below zero or above N−1
in (21) and (22). In that case, the baseband-equivalent signal
is outside the baseband bandwidth and is equal to zero. Also
note that decimation-by-N takes place, owing to the use of the
FFT.

Assuming that the baseband signals zp,k are wide-sense
stationary, the cross-correlation expression for each subband
(20) can be written as:

Rxk,yk
= E{xk(i) · yk(i)∗}
= αp · ε∗p · |zp,k|2 (24)

The assumptions made in (24) are that subband signals zp,k

and zp,k+(p−1)∗o do not correlate unless p = 1 and that
zp,N−k−1 and z∗p,N−k−1−(p+1)∗o never correlate, regardless
of p. The assumptions will hold true if ∆f is large enough
that the subbands are independent, i.e. larger than the inter-
channel spacing of the wireless standards being monitored.
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Fig. 7. A block diagram of the baseband processing algorithm. The signals
r1(n) and r2(n) are produced by the downmixer shown in Fig. 3.

Whether this offset can be reduced to smaller values is a topic
for further research.3

Note that the correlation (24) depends on εp and αp, which
are related to the mixers in the frontend. This fact can be
used as a way to perform system identification of the mixers,
which may be useful for calibration purposes. Also consider
that changing the discrete-time frequency shift, fd, in (14)
allows a different harmonic image to be selected instead of
z1(n). The correlation (24) will provide information on the
power of that harmonic image. Such information is useful in
adaptive harmonic rejection schemes, such as [5].

After obtaining an estimate of the cross-correlation (24)
for each subband using the estimator (20), the results are
thresholded to decide whether the subband can be considered
occupied or empty. The integration time given by the number
of samples, M , should be chosen large.

A block diagram of the entire algorithm is given in Fig. 7.
The time it takes the algorithm to produce an occupancy vector
is equal to N ·M

Fs
seconds.

C. Implementation aspects

The algorithm from Fig. 7 need not be implemented as
shown. For instance, when the LO offset ∆f is chosen to be
an integer multiple of the subband spacing of the FFT, then
the downmixing action performed on r2(n) can be achieved
by shifting the elements in the vector yp.

A further reduction in complexity is achieved by realizing
that only the overlapping part of r1(n) and r2(n) provides
correlative information about the desired signal spectrum.
Therefore, not all elements from xp and yp need be taken
into account when performing the cross-correlation. In ef-
fect, the number of correlators can be reduced from N to
Ncorr =

⌈
N Wbb−2∆f

Wbb

⌉
, where d·e denotes a ceiling operation.

A radix-2 FFT requires 2N · log2(N) real multiplies and
3N · log2(N) real adds. In addition to the FFT, a window
must be applied. The windowing operation consists of 2N real
multiplies. There are two FFTs and therefore two window op-
erations necessary, bringing the count to 4N · log2(N) + 4N

3Consider that an OFDM signal consists of multiple carriers, of which
most can be considered independently modulated. In such a case, a frequency
offset smaller than the OFDM channel spacing will not result in significant
correlation.
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Fig. 8. Algorithmic complexity as a function of the number of subbands, N.
The number of correlators, Ncorr , is equal to N .

multiplies and 6N · log2(N) real additions. Each correlator
performs one complex multiply, one complex add and a
conjugation for each new xp (or yp) vector. The conju-
gation of yp can be performed by the complex multiply.
Therefore, a correlator equates to 4 real multiplies and 4
real adds. There are Ncorr correlators, so the total com-
plexity becomes 4N · log2(N) + 4Ncorr + 4N multiplies and
6N · log2(N) + 4Ncorr adds which must be performed Fs

N
times a second.

Figure 8 shows the total number of operations and the
number of operations per sample as a function of the number
of subbands, N . The number of correlators Ncorr was chosen
equal to N . The lower graphs shows that the number of
operations per sample does not become prohibitively large for
a large number of subbands. For every doubling of the number
of subbands, the number of multiplies grows by four and the
number of additions grows by 6. The increase is solely due to
the FFT.

IV. SIMULATIONS

We performed simulations to demonstrate the effectiveness
of the detection algorithm. The aim is to compare a traditional
detector based on the power spectral density with our detection
algorithm. The baseband-equivalent mixer model (11) was
used to generate the baseband signals r1(n) and r2(n). The
αp and βp coefficients were chosen to represent a switching

fLO1 2fLO1 3fLO1 4fLO1 5fLO1 6fLO1

Fig. 9. Graphical representation of the RF signals and their frequencies as
given by Table I.

mixer with a 50% duty cycle square wave:

αp =

{
0 if p is even,
1
p if p is odd

(25)

βp = 0 (26)

The fact that βp = 0 means that there is no I/Q imbalance.
The desired signal is a sinusoid and the harmonic image

signals are all 64-QAM modulated using random bitstreams.
The 64-QAM signals occupy approximately 1/16 of the base-
band bandwidth. Their stength (standard deviation σ) and
frequency are shown in Table I and in Fig. 9. The signals were
deliberately placed so that they overlap after downmixing.
Futhermore, two of the image signals are 34 dB stronger (at
the antenna) than the desired signal.

harmonic frequency [cycles/sample] strength [σ]
1 -0.015 1
2 0.01 1
3 0.02 50
4 -0.005 1
5 -0.015 50
6 0.025 1

TABLE I
FREQUENCY AND STRENGTH OF SIMULATED SIGNALS

The number of subbands was set to N = 1024. Taking
the spectral spreading of the Nutall window into account, this
leads to a resolution of 1024/8 = 128 distinct frequency bins.
The frequency offset was set to df = 60

1024 , which equates to
a distance of 60 FFT bins.

Figure 10 shows the power spectral density (PSD) of r1(n)
and s(n). The PSD of r1(n) shows that almost all harmonic
images are on top of each other and that the sinusoidal desired
signal can be seen peaking just above them. It is clear that the
different harmonic images present in s(n) undergo different
frequency shifts compared to r1(n). However, the desired
signal undergoes no frequency shift. A detector based on the
PSD will detect the presence of the harmonic images, as can
be seen from Fig.10. Therefore, it is not suited for spectrum
sensing when harmonic images are present.

Our detector should be able to distinguish the harmonic
images from the desired signal. That this is indeed the case, is
shown by Fig. 11, which gives the power spectrum based on
the cross-correlation for correlation length M=1,64 and 1024.
As a reference, the PSD of r1(n) is also plotted.

Figure 12 is a zoomed in version of Fig. 11 which shows the
spectrum around the sinusoidal signal present in the desired
spectrum. The PSD curve shows that harmonic images are
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Fig. 10. The power spectral density of r1(n) and s(n). The quadrature
downmixers do not suffer from I/Q imbalance.
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Fig. 11. Power spectral density of r1(n) and the cross-correlation vectors
for M=1,16 and 1024. The quadrature downmixers do not suffer from I/Q
imbalance.
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Fig. 12. A zoomed in version of Fig. 11. The quadrature downmixers do
not suffer from I/Q imbalance.
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Fig. 13. The power spectral density of r1(n) and s(n). The quadrature
downmixers have I/Q imbalance. The I/Q imbalance image rejection is 40 dB.

being detected, as the PSD response is only 9.3 dB (at 0.02
cycles/sample) below that of the sinusoid. Examining the
cross-correlation curves shows that the harmonic images have
been rejected by more than 61.5 dB for M = 1 to more than
80 dB for M = 1024 at 0.02 cycles/sample. Note that the
large rejection for M = 1 dB is owing to the fact that there
is no signal present at 0.02 cycles/sample in s(n).

The harmonic images are suppressed by 61.5 dB for M = 1
and every 1000-fold increase of M will add 15 dB of sup-
pression. As the averaging is done in the power domain, not
the amplitude domain, we cannot expect more. Given enough
samples, the non-correlating peaks will disappear in the noise
and our cross-correlation algorithm will be able to separate
the harmonic images from the desired spectrum. However, this
may take an unrealistic number of samples.

The previous simulation did not take into account the fact
that imperfections in the analog frontend, such as an amplitude
or phase mismatch between the I and Q paths of r1 or r2,
cause I/Q imbalance. When I/Q imbalance is present, the
complex conjugated terms in (21) and (22) come into play.
We performed the above simulations again, this time with
βp = 0.01 · ej·2π·φ, where the phase angle φ was arbitrarily
chosen to equal 0.1. The I/Q imbalance image rejection of this
quadrature downmixer is 40 dB.

The I/Q imbalance images can clearly be seen in the PSD
plot of s(n), see Fig. 13. However, the I/Q imbalance images
in r(n) are disguised by the harmonic images and the desired
signal. By comparing Fig. 10 to Fig. 13, the rejection of the
harmonic images remains the same. This is easily explained
as the I/Q imbalance images manifest themselves in subbands
different from the harmonic images. Therefore, they are not
seen by the same correlators. The I/Q imbalance images
experience the same rejection of 15 dB per 1000-fold increase
in the number of correlator samples, M .

While the number of correlation samples, M , needed to
fully reject the harmonic images may prove prohibitively large,
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Fig. 14. Power spectral density of r1(n) and the cross-correlation vectors
for M=1,16 and 1024. The quadrature downmixers have I/Q imbalance. The
I/Q imbalance image rejection is 40 dB.
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Fig. 15. A zoomed in version of Fig. 14. The quadrature downmixers have
I/Q imbalance. The I/Q imbalance image rejection is 40 dB.

our method may still be useful. Consider the fact that if
the PSD, which is obtainable from less samples, indicates
no signal presence in a frequency bin, the cross-correlation
information of that bin can be disgarded. However, when the
PSD indicates the presence of a signal in a bin, the signal’s
origin must be checked. To check the origin of the signal,
we can compare two cross-correlation vectors. One obtained
using M = 64 and averaged in magnitude 16 times and the
other obtained using M = 1024. If the power in the bin
reduces by approximately 10 · log10 ( 1024

64 ) = 6 dB, it must be
occupied by a harmonic image. If the attenuation is less, there
is correlative energy and a signal from the desired spectrum
is also present. Whether this solution is feasible, is a topic for
further investigation.

Another way to make use of our cross-correlation method,
is to apply a multi-path harmonic-rejection mixer [4], which
offers about 40 dB of harmonic image rejection without the use
of an RF filter. As the harmonic images are already rejected
by a fair amount, the cross-correlation algorithm need not
provide as much rejection as without a harmonic-rejection
mixer. A rejection of 40 dB reduces the required number of

correlation samples by a factor of 108, which is an extremely
large reduction. Note that the 40 dB of harmonic rejection
offered by harmonic rejection mixers is not enough to solve
the problem of erroneous detection of the harmonic images as
these images can be more than 100 dB above the noise floor.

In addition to rejecting the harmonic images, the cross-
correlation method will also reject spurious signals that find
their way into r1 and r2. These spurious signals can come
from other parts of the receiver circuitry, such as the frequency
synthesizer, the clock generators and the digital baseband
processor. Spurious signals can also enter the receiver circuity
from the power supply terminals of the circuit. The rejection
occurs because the digital-domain frequency shift, (14), will
decorrelate them.

In conclusion, note that because the algorithm is based on
cross-correlation, its performance is independent of the modu-
lation schemes of the desired signal and the harmonic images.
Only the energy contained within each FFT subchannel, xk

or yk, and the number of averaged cross-correlation samples,
denoted by M , determine the suppression of the harmonic
images.

V. CONCLUSIONS

We have introduced the important problem of harmonic
downmixing in the context of normal receiver operation and
spectrum sensing applications, such as cognitive radios. Har-
monic downmixing is the result of harmonics in the effective
LO waveform, which cause RF signals found at multiples
of the LO’s fundamental frequency to be downconverted to
baseband.

In cognitive radio, power spectral density (PSD) measure-
ments are used to perform spectrum sensing. However, given
the presence of harmonic images in the baseband signal of
the sensing receiver, a PSD-based algorithm will mistakenly
identify the frequency as occupied. In this paper we presented
an algorithm based on cross-correlation, which is able to reject
the harmonic images making correct occupancy identification
possible.

The algorithm uses two baseband observations, r1(n) and
r2(n), which are generated by two quadrature mixers. The LO
frequencies of the mixers are offset by ∆f Hz. Because of
this, the harmonic images undergo different frequency shifts
with respect to the desired signal spectrum and each other.
This causes a decorrelation of the harmonic images, while
the desired signal spectrum remains correlated. A subband
cross-correlator is used to identify which frequency bins are
occupied by a signal within the desired spectrum.

The complexity of the algorithm was analyzed. A 1024-
band measurement needs 48 real multiplications and 64 real
additions per sample. At positions where the harmonic images
are present and detected by the PSD method, the cross-
correlation method is able to reject these signals by more than
80 dB. This figure is not affected by I/Q imbalance.

In addition to rejecting the harmonic images, any spurious
signals entering the receiver through the analog baseband
inputs will also be rejected.
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APPENDIX A
PROOF OF THE UNBIASEDNESS OF THE

CROSS-CORRELATION ESTIMATOR

We will show that the estimator (20) is unbiased when x
and y are jointly wide-sense stationary. To prove this, we must
show that the expected value of the estimate R̂xy is equal to
Rxy .

We begin by writing out the expectation of the estimator:

E{R̂xy} = E

{
1
N

N−1∑
n=0

x(n) · y(n)∗
}

(27)

We proceed by moving the expectation operator into the sum:

E{R̂xy} =
1
N

N−1∑
n=0

E{x(n) · y(n)∗} (28)

As the expectation of the terms E{x(n) · y(n)∗} are all equal
to Rxy when x and y are jointly wide-sense stationary, we
may simplify the above to:

E{R̂xy} =
1
N

N−1∑
n=0

Rxy (29)

,which can be reduced to:

E{R̂xy} = Rxy (30)

Hence, the estimator (20) is unbiased.

APPENDIX B
I/Q IMBALANCE AND HARMONIC REJECTION PARAMETERS

The relation between the complex-valued baseband output,
the baseband-equivalent signals zp(t) and the Fourier coeffi-
cients of the quadrature LO waveforms, {c0, c1, . . . , c∞} and
{d0, d1, . . . , d∞}, see (8), may be restated as:

r(t) =
1
2

∑
p=1

(
αp · zp(t) + βp · z∗p(t)

)
, (31)

where αp = (cp − j · dp)∗ and βp = (cp + j · dp).
The magnitudes |βp| and |αp| give the amount of harmonic

image suppression.

The suppression of the pth harmonic image with respect to
the desired spectrum can be defined as

Lharmonic,p =
|α1|2

|αp|2
(32)

,or in decibel:

Lharmonic,p = 10 · log10

(
|α1|2

|αp|2

)
dB (33)

Each harmonic image has an associated I/Q imbalance
image, owing to I/Q imbalance in the receiver. The I/Q
imbalance image suppression of the pth harmonic image is
defined by (34).

Lquad,p =
|αp|2

|βp|2
(34)

In decibel it is given by:

Lquad,p = 10 · log10

(
|αp|2

|βp|2

)
dB (35)

This is an extension of the formulation of Lquad given by
[9].
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