

Teledyne DALSA • 605 McMurray Road • Waterloo, Ontario, N2V 2E9 • Canada <u>https://www.teledynedalsa.com/</u>

Linea HS 32K TDI Camera (HL-HM-32K) Super Resolution Mode

Overview

This document demonstrates how to configure the Linea HS 32K TDI line scan camera for super resolution ("SR") mode.

Advantage of Super Resolution Imaging

The super resolution method brings many benefits to applications:

- Resolution is improved by 2x;
- Detectability, particularly for subpixel defects, is improved with 4~5x higher effective SNR for a given object;
- Responsivity, Full Well, SNR and MTF remain high, compared to typical, smaller pixels;
- Existing components can be reused: 16k/5µm lens, lighting, encoder, mechanical components, ...;
- Imaging performance is upgraded while maintaining low system costs.

Configuring the Frame Grabber in CamExpert

The LA-HM-32k camera must be paired with an Xtium2-CLHS_PX8-HR (part number: OR-A8S0-HX870) frame grabber to support super resolution functionality.

Note: The camera will image with an Xtium2-CLHS PX8 (part number: OR-A8S0-PX870), but this combination will NOT provide super resolution functionality.

 Close all Sapera applications, including CamExpert and open the Sapera Device Manager from Windows start menu.

 Select *Device Update* tab and select **Camera Link HS with HMTF** (High Modulation Transfer Function) from the *Configuration Information* options, then press *Start Update*.

🔭 Teledyne DA	★ Teledyne DALSA Device Manager v:4.08					
<u>File</u> <u>Tools</u> <u>He</u>	elp					
Check Up date Ma	anager					
Start Update	Savel	ontig tile Load Contig File Same Firmware	For All Devices V Use Device Information Factory Defaults			
Device		Field	Value	^		
Xtium2-CLHS_PX	(8_1	Serial Number	H1543117			
Update Device	\checkmark	Part Number	OR-A8S0-HX870			
		User Interface GIOs Reservation	0x00000007	Ī		
		User Interface GIOs Default Input Level	24V 🗸	I		
Open Interface GIOs Reservation		Open Interface GIOs Reservation	0x00000003			
User Interface GIOs Default Output State		User Interface GIOs Default Output State	High Impedance 🔹	I		
	Configuration 🗾		Camera Link HS with HMTF	ľ		
Information		Information	Support for one Camera Link HS camera with HMTF.	1		
ACU/DTE + PCIe Interface		ACU/DTE + PCIe Interface	1.31.01.0475	1		
Device State		Device State	Update Not Required	Î		
Xtium2-CLHS_PX	(8_2	Serial Number	H1229079	1		
Update Device 🔽 Part Number		Part Number	OR-A8S0-PX870			
		User Interface GIOs Reservation	0x0000007	T 🗸		
Device Info Device Update						
Output						
				\wedge		

Figure 1: HX870 frame grabber - firmware update to SR mode

3) Close the Device Manger and open the CamExpert.

- 4) Select **CameraLink HS Mono** in the **Device Selector**. The frame grabber can be configured in one of the following two ways:
 - a. Load a pre-configured file (.ccf). Some examples can be downloaded from: <u>https://www.teledynedalsa.com/en/support/downloads-center/</u>
 - b. Configure manually (see following)

Once **CameraLink HS Mono** is selected in the **Device** Selector, the frame grabber automatically configures basic parameters, such as number of Data Lanes, pixel depth, etc. They can be corrected, if necessary. Note that the frame grabber parameters are grouped under **Category / Board**. The following selection panes are available.

In **Basic Timing**, change to the desired resolution (e.g. 32768) in the **Value** column of **Horizontal Active (in Pixels)** - see selection in Figure 2.

Device: Device: Select a camera file (Optional)							
Parameters ×							
Category	Category Parameter Value						
Board	Camera Type	Linescan					
Basic Timing	Color Type	Monochrome					
Advanced Control	Pixel Depth	8					
External Triager	Data Lanes	5					
External ingger	Horizontal Active (in Pixels)	32768					
Image Buffer and ROI Data Valid Disabled							
Attached Camera - Xtium2-CLH	CLHS Configuration	None					
Camera Information	PoCL	Enable					
Camera Control	PoCL Status	Active					

Figure 2: Expected Basic Timing frame grabber parameters (note: image captured with non-SR PX8)

For best TDI results, Teledyne DALSA recommends shaft-encoder-based triggering. In **Advanced Control**, select **Shaft Encoder input** as **Line Sync Source** when supplying an external trigger from a shaft encoder.

Select **Method 2** in **Line Trigger Method Setting** as a physical trigger signal is supplied via the frame grabber.

Parameters			×
Category	Parameter	Value	
Board	Line Sync Source	Shaft Encoder input	Shaft Encoder input
Basic Timing	Internal Line Trigger Frequency (in Hz)	5000	None
Advanced Control	Camera Line Trigger Frequency Min (in Hz)	1	Internal Line Trigger
Eutereal Trigger	Camera Line Trigger Frequency Max (in Hz)	1000000	Shaft Encoder input
External ingger	Camera Control method selected	Line Trigger	
Image Buffer and ROI	Line Integration Method Setting	None	
Attached Camera - Xtiu	Line Trigger Method Setting	Method 2	
Camera Information	Strobe Method Setting	None	
Camera Control	Strobe Destination	Automatic	
Digital IO Control	Line Trigger Auto Delay	Disable	
Elat Field	Time Stamp Base	Microseconds	
	Board Sync Output 1 Source	Disabled	
image Format	Board Sync Output 2 Source	Disabled	
File Access Control			

Figure 3: Setting up encoder-based triggering, routed through the frame grabber

There are additional selection options for **Line Sync Source** (EXSYNC):

External Line Trigger - supply EXSYNC as single-ended TTL

None - EXSYNC input to the camera. Teledyne DALSA provides a floating-point EXSYNC rescaler, upgraded from the multiplier-divider feature. Refer to video instruction: https://youtu.be/ZjfmHXvOUZs and camera manual 03-032-20263.

Internal Line Trigger (with **Internal Line Trigger Frequency (in Hz)**) - camera speed programmed. TDI in-scan sharpness is strongly dependent on matched camera and object speed. This mode is not recommended where object speeds can vary.

Shaft Encoder Edge Drop and **Shaft Encoder Edge Multiplier** features can be used to adjust the sync rate and maximize the in-scan sharpness (reducing blur due to scan rate mismatch). The right combination can be determined according to the specific application, either experimentally or by calculation from magnification, shaft encoder specification and transport speed.

Note: this functionality has been upgraded to a floating-point re-scaler when EXSYNC is provided to the camera I/O.

Parameters		×	
Category	Parameter	Value	
🖯 Board	External Trigger	Disabled	
Basic Timing	External Trigger Detection	Falling Edge	
Advanced Control	External Trigger Level	24V	
External Tringer	External Trigger Source	Automatic 0 1	
External ingger	External Trigger Minimum Duration (in us)		
Image Buffer and ROI	Frame Count per External Trigger		
Attached Camera - Xtiu	External Trigger Delay	0	
Camera Information	External Trigger Delay Time Base	Nanoseconds	
Camera Control	External Trigger Ignore Delay	0	
Digital IO Control	Shaft Encoder Direction	Ignored	
Flat Field	Shaft Encoder Edge Drop	5	
	Shaft Encoder Edge Multiplier	4	
Image Format	Shaft Encoder Order	Device Specific	
File Access Control	Shaft Encoder Averaging Enable	Disabled	
Transport Layer	Shaft Encoder Averaging Pulses (2^N)	1	
Acquisition and Transfer C	Shaft Encoder Averaging Period Minimum (in ns)	10000	
Production Features	Shaft Encoder Averaging Period Maximum (in ns)	1000000	
	External Line Trigger Detection	Rising Edge	
	External Line Trigger Source	Automatic	

Figure 4: Re-Scaling the shaft encoder signal

This document does not contain information whose export/transfer/disclosure is restricted by the Canadian Export Control regulation.

Select/set parameters of Image Buffer and ROI as following.

Parameters		×
Category	Parameter	Value
🗆 Board	Image Width (in Pixels)	32768
Basic Timing	Image Height (in Lines)	1000
Advanced Control	Image Left Offset (in Pixels)	0
Advanced Control	Image Buffer Format	Monochrome 8-bits
External Irigger	Image Flip	Disabled
Image Buffer and ROI	Acquisition Frame Length method	Fix Length

Figure 5: Defining the size of a captured image

Once the frame grabber configuration is properly done, you can save the settings as a CCF file for future use.

Operation with other Frame Grabbers

Should the application be unable to use an HX870 frame grabber, separate post processing must be used. Contact Teledyne DALSA for availability of the proprietary reconstruction algorithm.

In this case, configure the camera to supply raw data in two, 1/2 pixel shifted, 16K images.

Set the Horizontal Active (in Pixels) in Basic Timing and Image Width (in Pixels) in Image Buffer and ROI to 16384. Then select Monochrome 8-bit (2 planes) in the Image Buffer Format.

Parameters ×				
Category		Parameter	Value	
Basic Timing		Image Width (in Pixels)	16384	
Advanced Control		Image Height (in Lines)	128	
External Trigger		Image Left Offset (in Pixels)	0	
		Image Buffer Format	Monochrome 8-bit (2 planes)	
Image Buffer and KOI		Image Flip	Disabled	
Attached Camera - Xt		Acquisition Frame Length method	Fix Length	

Figure 6: Setting up raw data read-out - frame grabber

On the camera side, in **Camera Control / TDI Mode**, select **TDI Planar** instead of TDI Super Resolution.

Parameters				×
Category		Parameter	Value	^
Basic Timing	^	Sensor Color Type	Monochrome	
Advanced Control		Acquisition Line Rate	200000.0	
External Trigger		Measured Line Rate	200000	
		Refresh Measured Line Rate	Press	
Image Buffer and ROI		Acquisition Frame Rate	Not Enabled	
Attached Camera - Xt		TDI Mode	TDI Planar	
Camera Information		TDI Stages	Not Enabled	
Camera Control		Direction Source	Internal	
Digital IO Control]	Internal Scan Direction	Forward	

Figure 7: Setting up raw data read-out - camera

Configuring Camera in CamExpert

To configure the camera for TDI Super Resolution

- 1. In the Camera Control category, set:
 - **TDI Mode** = *TDI Super Resolution*

Parameters		×	
Category	Parameter	Value	
🗆 Board	Device Scan Type	Linescan	
Basic Timing	Sensor Color Type	Monochrome	
Advanced Control	Acquisition Line Rate	15000.0	
Eviternal Trigger	Measured Line Rate	15000	
External ingger	Refresh Measured Line Rate	Press	
Image Buffer and ROI	Acquisition Frame Rate	Not Enabled	
Attached Camera - Xtium2-CLHS_PX8_1	TDI Mode	TDI Super Resolution	
Camera Information	Direction Source	TDI	
Camera Control	Internal Scan Direction	TDI Super Resolution	
Digital IO Control	Analog Gain	TDI Area	
Flat Field	Gain Selector	TDI Extended Area	
Income Format	Black Level	0	
Image Format	Gain	1.0	
File Access Control	Super Resolution Mode	SR Mapped	
Transport Layer	SR Strength	0.15	
Acquisition and Transfer Control	<< Less		

Figure 8: Enable Super Resolution ("SR") in the camera

This document does not contain information whose export/transfer/disclosure is restricted by the Canadian Export Control regulation.

2. In the **Camera Control** category, set: **Super Resolution Mode** = *SR Mapped*.

Attached Camera - Xtium2-CLHS_PX8_1		TDI Mode	TDI Super Resolution
Camera Information		Direction Source	Internal
Camera Control		Internal Scan Direction	Forward
Digital IO Control	1	Analog Gain	1
Flat Field		Gain Selector	System Gain
luce a Farmat		Black Level	0
Image Format File Access Control Transport Layer Acquisition and Transfer Control		Gain	1.0
		Super Resolution Mode	SR Mapped 🔻
		SR Strength	SR Mapped
		<< Less	SR Detail Restored

Figure 9: Selecting Super Resolution Options

- **Note** : Unlike typical bilinear or bicubic interpolation methods, Teledyne DALSA's proprietary and patent-pending super resolution system derives a balanced, artefact free 32k image that provides higher detectability, especially for small defects, high MTF, low noise and high SNR, all with the responsivity of a 5µm pixel. The combination of camera, CLHS interface and High-Resolution frame grabber enables this functionality up to full line rate.
- The **SR mapped** function utilizes the first stage in Teledyne DALSA's patented processing chain. The high resolution image is created, benefitting the system with higher Full Well, higher SNR and lower noise.
- This mode provides the lowest level of data processing in the Teledyne DALSA system and hence poses the lowest risk of affecting subsequent user data processing. Use this mode in the initial setup to evaluate whether your system benefits enough from the 32k SR operation and to avoid conflicts for sub-sequent algorithms.

3. In the **Camera Control** category, set **Super Resolution Mode** = *SR Detail Restored*.

The **SR Detail Restored** function utilizes the full Teledyne DALSA's patented processing chain. The high resolution image is created as in the SR Mapped function, but details from the original images are retained and reconstructed, delivering higher detectability (via higher SNR and MTF) for small, and especially sub-pixel, defects.

Adjust the **SR Strength** between 0 and 1 (default 0.15) to optimize the detection of key features in the application. Teledyne DALSA's experience is that reconstruction between 0.15 and 0.5 is the most acceptable range. Higher factors may to disturb subsequent algorithms due to higher noise or false positives. Experimental verification in the final application is recommended.

Attached Camera - Xtium2-CLHS_PX8_1	TDI Mode	TDI Super Resolution
Camera Information	Direction Source	Internal
Camera Control	Internal Scan Direction	Forward
Digital IO Control	Analog Gain	1
Flat Field	Gain Selector	System Gain
lesses Format	Black Level	0
Image Format	Gain	1.0
File Access Control	Super Resolution Mode	SR Detail Restored
Transport Layer	SR Strength	0.15
Acquisition and Transfer Control	<< Less	

Figure 10: Setting the Detail Restoration Strength

For more details, refer to the camera user manual: 03-032-20290.

Super Resolution Fundamentals

The 32k camera uses two 16k/5µm TDI arrays, each charge-summing 64 TDI stages for high sensitivity, photon collection and Responsivity. The pixel arrays are shifted ½ pitch in both, horizontal (cross-scan) and vertical (inscan) direction.

Figure 11: Logical Concept of the SR Image Sensor ¹⁾

The two 16k/5µm image lines are captured simultaneously and reconstructed in the frame grabber, in real time, to produce the super resolution image of 32k/2.5µm. A simplified reconstruction is shown here:

Figure 12: Super Resolution Reconstruction Concept ^{2,3)}

The following example has been obtained to compare 16k with 32k SR imaging.

Figure 13: 16k Resolution

Figure 14: 32k Super Resolution

Notes:

- 1) The pixel shift shown is a logical concept. Physically, the distance of the two sub-arrays in the in-scan direction can be $N+\frac{1}{2}$ without impacting the operation (N = integer value)
- Teledyne DALSA's patent-pending Super Resolution is a specific, sensor design and device physics based, hardware and algorithmic architecture, utilizing in-depth knowledge and experience of imaging, sensor and process technologies
- 3) Employing typical, simplified bi-linear, bi-cubic, traditional or AI-based upscaling can be employed, but will not yield the same performance benefits noted throughout.

Further Support

Should you have any questions, please feel free to contact your local TCS (Technical Customer Support) teams.