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Abstract-Practical time delay circuits do not have a perfectly 
linear phase-frequency characteristic. When these delay circuits 
are applied in a phased-array system, this frequency dependency 
shows up as a frequency dependent beam direction (“beam 
squinting”). This paper quantifies beam squinting for a linear 
one-dimensional phased array with equally spaced antenna 
elements. The analysis is based on a (frequency-dependent) linear 
approximation of the phase transfer function of the delay circuit. 
The resulting relation turns out to be invariant for cascaded cells. 
Also a method is presented to design time-delay circuits to meet a 
maximum phased-array beam squinting requirement. 

Index terms: Phased-arrays, Beam-forming, Beam squint, Beam 
pointing, Analog delay, True time delay, Phase-shifter, fϕϕϕϕ=0. 

I. INTORDUCTION 

Phased-array antenna systems have wide range of 
applications for example in radar, imaging and communication 
systems [1], [2], [3]. The design of phased array systems is 
challenging, especially when a wide band of operation is 
required. An important phenomenon that can limit bandwidth 
in phased array antenna systems is beam squinting [1], i.e. the 
changing of the beam direction as a function of the operating 
frequency, see figure 1. 

 

Figure 1: Antenna pattern illustrated beam squint 

Beam squinting, in words, means that an antenna pattern 
points to θ0+∆θ at frequency f0+∆f instead of θ0, which was the 
pointing direction at frequency f0. With figure 1, we see that 
this might also be interpreted as a reduction of the gain in the 

direction θ0, limiting the usable bandwidth of the system.      
The goal of this paper is to quantify beam squinting, i.e. 
express ∆θ as a function of ∆f. To clarify the approach in our 
work compared to previous work, figure 2 shows the phase-
frequency characteristics of an ideal phase-shifter, an ideal 
time-delay and a practical time-delay circuit used in a 
frequency band centred on f0. In [1] a beam squinting formula 
has been derived for phased array systems realized with ideal 
phase-shifters. Also, in [4] a beam squinting formula has been 
derived for phased-array systems with ideal time-delays and 
phase-shifters used at different hierarchical levels. Here we 
will derive a beam squinting formula based on the tangent line 
in Figure 2, which models practical time delay non-ideality 
using the criterion fϕ=0 [6]. We extract fϕ=0 from the phase 
transfer function of a practical (non-ideal) delay cell to 
quantify variations of the delay with frequency centred on f0. 

 

Figure 2. Phase-frequency characteristic of a practical delay circuit, its tangent 
approximation line in comparison to an ideal delay, and an ideal phase-shifter 
circuit 

Criterion fϕ=0 can be used for arbitrary delay cells, for 
example it fits well to gm-RC and LC delay cells. The main 
reason for its use, however, is that it is proven to be invariant 
for cascaded cells [6] which allows establishing a direct 
relationship between phased array system specifications and 
the delay cell requirements. 

The relation between ∆θ and ∆f is established in section II. 
With the help of a two-term Taylor approximation, formulated 
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in section III, we develop the beam squinting relation in the 
presence of time-delay nonlinearities in section IV. Finally the 
relation between system specifications and delay-element 
requirements is illustrated in section V after which it is applied 
to a typical example in section VI. 

II. RELATION BETWEEN ∆θ  AND ∆F 

Figure 3 shows a typical linear phased array where d is the 
distance between any two adjacent antenna elements and            
-π/2<θ<π/2 is the spatial direction of the beam with respect to 
bore sight. D0,..,DN-1 are the delay blocks after the antenna 
elements. 

     Figure 3. Linear phased array antenna system with equally spaced antennas 

Equation 2 defines the beam pattern So,pattern(θ) [7]: 

���������	
θ� � ��
θ� �������� � ��������������	 ������	 !"���
��� �������
#� 

Se(θ) is the antenna element pattern, αi is the “amplitude 
tapering factor” of the ith antenna route, c is the speed of light 
and θ0 the direction of the main beam. Equation 3 shows the 
values of delay in delay blocks to have beam direction toward 
θ0: 

$%& � ' ( )* +', θ�����- �' � .� / � 0 1 2����������������������������������
3� 
�A general realization method for D0,...,DN-1 is by cascading 

different numbers of identical delay cells (figure 4). Delay cells 
for instance are realized by gm-RC or LC circuits. 

 

Figure 4. Delay Di synthesized from cascaded delay cells. 

Equation 3 reveals that the delay of each delay block  

(D0,...,DN-1) is an integer multiple of 45� � �67 +', θ�".For 

practical implementations: tD1=tD1(f). By substituting 45�
8� ��67 +', θ�"�in (2) we get: 

���������	
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The beam direction at frequency f is the value of θ that 
results in a maximum value of So,pattern(θ), which happens when 
all antenna contributions align up in phase, i.e. [7]: >? @ABC 1 45�
8� � .����������������������������������������������������������������
D� 

Suppose that at f0 the beam direction is toward θo, then: 

>? @ABC� 1 45�
8�� � .������������������������������������������������������������
E� 
If the operating frequency varies from f0 to f0+∆f, then due 

to beam squinting the beam points towards direction θ0+∆θ. 
Substituting f0+∆f and θ0+∆θ in (5) renders: �� @AB
C� F ∆θ� 1�45�
8� F G8� ��� .����������������������������������
H) 

The beam squinting formula ∆θ=∆θ(∆f) can be derived by 
solving (7). However, because terms at the left side of (7) are 
nonlinear functions of θ0+∆θ and f0+∆f, its analytical solution 
can be complicated which is inconvenient for design purposes. 
Therefore, we will approximate both nonlinear terms of (7) by 
a linear 2-term Taylor series approximation.  

III. Fϕ=0:A CRITERION FOR DELAY VERSUS FREQUENCY 
VARIATIONS 

In order to linearly approximate tD1(f0+∆f), we use a recently 
introduced criterion fϕ=0 [6] to quantify delay variations over 
frequency. The fact that fϕ=0 is not affected by cascading of 
identical cells makes it particularly attractive for designing 
cascaded delay circuits as in figure 4.  

Figure 5, shows the fϕ=0 for the phase transfer function of 
tD1(f). At operating frequency of f0, fϕ=0,D1 is defined as the 
cross-point of the frequency axis with the tangent line L to the 
phase characteristic at (f0,ϕD1(f0)).  

By inspection of figure 5 we can write fϕ=0,D1 as [6]: 

8I���5� � 8� 1 J5�
8��KLJ5�
8�L8 M�!
����������������������������������������������������
N� 

The delay of the delay block D1 at frequency f0 is equal to 
tD1(f0)=-ϕD1(f0)/(2πf0). 

For finding the delay at f0+∆f, we linearly approximate the 
curve with its tangent (L line) (equation 9) [6].  
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Figure 5. fϕ=0 for delay D1 that is operating at f0 

45�
8� F G8� O 45��
8���P2 F 8I���5�8�2 1 8I���5�8�
G88� ��Q����������
R� 

As it is shown in figure 4, D1 is synthesized with cascaded 
identical delay cells and fϕ=0,cell  for each delay cell is[6]: 

8I�����SS � 8� 1 J��SS
8��KLJ��SS
8�L8 M�!
����������������������������������������������
2.� 

It can be proven that fϕ=0,D1=fϕ=0,cell [6], which is illustrated in 
figure 6. Substituting fϕ=0,cell in equation 9, we find:  

45�
8� F G8� O 45��
8���P2 F 8I�����SS8�2 1 8I�����SS8�
G88�Q��������
22� 

 
Figure 6. Cascading identical delay cells does not affect fϕ=0 

Equation 11 shows that we can estimate delay of tD1(f0+∆f) 
via tD1(f0) and also fϕ=0 of its constituent delay cells. 

In the next section this result is used to derive ∆θ(∆f). 

IV. BEAM SQUINTING FORMULA 

We will now use the linear approximation derived in the 
previous section to derive the beam squint formula. 
Substituting equation (11) in (7) and some rewriting gives: 

�� T@ABC� F ∆θU *V+C�W 1 45��
8�� X2 F YZ[!�\]^^Y!��YZ[!�\]^^Y!
�G��!_ �.���������������������������������������������������������������������������������������������������
2#�  

Rearranging terms of equation 12 results in: 

`>? @ABC� 1 45�
8��a F 

b>? ( ∆θ ( *V+C� 1 45�
8�� 8I�����SS8�2 1 8I�����SS8�
G88� c � .������������
23� 

The part between the first brackets is zero according to (6). 
Therefore the remaining part of (13) must be equal to zero too, 
which allows to easily solving ∆θ as a function of ∆f: 

∆θ � 28� ?> �45�
8��*V+C�
8I�����SS8�2 1 8I�����SS8� ( G8���������������������������������
2=� 

 This can be further simplified, substituting tD1(f0) from (6) 
in (14). The result is (15) or the beam squinting formula: 

∆θ � $d,C�8�
8I�����SS8�2 1 8I�����SS8� � ( G8��������������������������������������������
2D� 

Thus we see that fϕ=0,cell/f0 is crucial for beam squint 
estimation. For a phased array realized by ideal time-delay 
cells, fϕ=0,cell is equal to zero and we find indeed zero squinting 
(=0). For a phased array realized by ideal phase-shifters, fϕ=0,cell 

is equal to -∞ rendering the result from [1]:  

∆θ � 1 $d,C�8� ��G8������������������������������������������������������������������
2E� 
In the next section as an example fϕ=0,cell will be derived for 

an all-pass delay cell. 

V. BEAM SQUINTING WITH ALL-PASS DELAY CELLS. 

One possibility is to realize a time-delay cell by 
implementing a first order all-pass filter. The ideal transfer 
function of this all-pass filter is given as: 

e�SS�����
8� � � f2 1 g 8�8hif2 F g 8�8hi������������������������������������������������
2H� 
We use equation (10) to find a normalized graph of the 

fϕ=0,cell versus f0/fp. Normalization gives us a generalized curve 
to be used for 1st order delay cells with any value of the pole 
frequency (fp) and the operating frequency (f0). The curve helps 
to find an fp for the delay cell to keep the beam squinting below 
a requested range. The phase transfer function of the 1st order 
all-pass cell is:  

J�SS�����
8� � 1#$d,�� f 8�8hi�����������������������������������������
2N� 
This leads to amount of the delay per all-pass cell at f0:  

4�SS�����
8�� � #$d,�� f8��8�i#j8� �����������������������������������������������
2R� 
Substitution of (18) in (10) and normalization for f0 results 

equation (20) which its graph is figure 7. 8I����SS�����8� � 2 1 k4kB 98�8�< l8�8� F 8�8�m��������������������������
#.� 
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Figure7. Normalized fϕ=0 versus f0 curve for all-pass cells 

This graph is used to find minimum value of fp of a 1st order 
all-pass delay cell that satisfies a certain permitted amount of 
the beam squinting. Suppose an amount of ∆θ/∆f for the 
phased array antenna is permitted, then via (15), fϕ=0,cell/f0 is 
found and then via the graph of the figure 7, f0/fp and 
consequently the minimum value of fp can be found. 

VI. EXAMPLE  

We show how we can find the minimum required pole 
frequency (fp) of an all-pass delay cell starting from a beam 
squinting specification and verify the design by simulations. 
We aim to keep the beam squinting in a defined range. As an 
example, we assume a linear phased array antenna system with 
the following characteristics: N=100 antenna elements, 
operating frequency f0=10GHz, element distance d=λ/2=1.5cm 
and a maximum steering angle θ0=60°. Assume furthermore 
that an absolute beam squinting per frequency deviation 
(∆θ/∆f) of less than 3°/GHz is required: 

fϕ=0,all-pass/f0 is found by substituting ∆θ/∆f, f0 and θ0 in beam 
squinting formula (15). The result is: fϕ=0,all-pass/f0>-0.43. 
Substitution of fϕ=0,all-pass/f0>-0.43 in graph of figure 7 results 
f0/fp<0.85. Because f0=10GHz, then we will find fp of the all-
pass delay cell which is  fp>11.8GHz. 

Therefore, to obtain a beam squinting less that 3°/GHz, the 
all-pass delay cell which we use in the phased array must have 
a pole frequency (fp) bigger that 11.8GHz. The delay of the cell 
is found from equation 19 which is tall-pass=21.4 ps. The 
maximum required delay for the phased array (Delay of DN-1 

block of figure 3) is found by substituting values of i=N-1=99, 
d=λ/2=1.5cm, c=light speed and θ0=60° in equation 3. The 
result is: tD99= 2143psec, Maximum number of cascaded delay 
cells to synthesize tD99 is found from tD99/ tall-pass which is: 
100.14. Therefore 101 cascaded all-pass delay cells are 
required for synthesizing D99 delay block in the phased array 
antenna system. 

Finally, to verify the precision of our method, we simulate 
the phased array with delay blocks as synthesized above, to 
check if the beam squinting is in the requested range. Table 1 
compares the simulated and required beam squinting for 
different frequency offsets from f0=10GHz. The error is 
calculated via: Error=(∆θSimulated-∆θRequired) .It shows that up to 

15 GHz (50% offset from f0), the absolute amount of the error 
remains less than 14% of ∆θRequired. This shows that via our 
method we can design delay cells to keep the beam squinting in 
the requested range.  

Table 1 

Comparison between the simulated and the required beam squinting 

       

VII. CONCLUSION 

A general formula was derived to estimate beam squinting in 
phased array antenna systems. This formula is particularly 
useful to estimate beam squinting of wide band (time-delay 
based) phased array antenna systems. To estimate beam 
squinting we first calculate the criterion (fϕ=0,cell) from the 
phase transfer function of the delay cell. Then find the beam 
squinting via the beam squinting formula with fϕ=0,cell as a 
parameter.  

Also the beam squinting formula can be used to estimate the 
amount of fϕ=0,cell to keep the beam squinting in a permitted 
range. We designed a phased array with 1st order all-pass delay 
cells via this method. The method is suitable for non-ideal 
time-delay elements as well as for non-ideal phase-shifters, or 
any other element where the phase transfer can be 
approximated linearly. 
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